[AI2613 Lecture 7] Doob Martingale, Azuma-Hoeffding,
McDiarmid

Fune 15, 2023

1 Hoeffding’s Inequality

We introduced the following Hoeffding’s inequality to bound the concentra-
tion for the sum of a sequence independent random variables.

Theorem 1 (Hoeffding’s Inequality) Let X, ..., X, be independent random
variables where each X; € [a;, b;] for certain a; < b; with probability 1. Let
X=Y"X;andp 2 E[X] =YL, E[X;], then

Pr|X —pl > 1] <2 ( 2t )
T - = S ex; Y
: P\ S - a)?

forallt > 0.

Before proving Theorem 1 in Section 3, we see a practical application of
Hoeftding’s inequality.

Example 1 (Meal Delivery) During the quarantine of our campus, the pro-
fessors deliver meals for students using their private cars or trikes. Then a
practical problem is how to estimate the amount of meals on a trike conve-
niently (See the news).

Assume there are n boxes of meal on the trike (n > 200 and is un-
known for us). Let X; be the weight of the i-th box of meal. Assume that
X1, Xz, ..., X, are i.i.d. random variables, each X; € [250,350] (unit: gram)
and p = E[X;] = 300. Let S be the total weight of the meal boxes on the
trike, that is, S = )l X;. We can weigh the meal boxes and use i = % as an
estimator for n. Now we compute how accurate this estimator is.

Let § > 0 be a constant. By Hoeffding’s inequality,

282 1120
Pr[|i—n| > én] =Pr[|S — un| > dun] < 2exp{— ikl } (1)

" (350 — 250)2

Plugging p = 300, 5 = 0.05 and n > 200 into Equation (1), by direct calcula-

tion, we have

Pr[A € [0.95n,1.050]] > 1 — 2.4682 x 10~%.

2 Concentration on Martingale

We consider the balls-in-a-bag problem. There are g green balls and r red
balls in a bag. These balls are the all same except for the color. We want to
estimate the ratio @ by drawing balls. There are two scenarios.
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« Draw balls with replacement. Let X; = 1[the i-th ball is red]. Let X =
1 Xi. Then clearly each X; ~ Ber (#) andE[X]=n %

r+b:
Since all X;’s are independent, we can directly apply Hoeffding’s inequal-

ity and obtain

2t?
Pr{| X -E[X]| >t] < 2exp (—T)

« Draw balls without replacement. Again we let ¥; = 1[the i-th ball is red],
then unlike the case of drawing with replacement, variables in {Y;} are
dependent. Let Y = )} | Y;. We first calculate E [Y].

For every i > 1, E [Y;] is the probability that the i-th draw is a red ball.
Note that drawing without replacement is equivalent to first drawing a
uniform permutation of r + g balls and drawing each ball one by one in
that order. Therefore, the probabilty of ¥; = 1 is rig—Dl _ r g4 we

Tt T g
have E[Y] =n- é.

However, since {Y;} are dependent, we cannot apply Hoeffding’s in-
equality directly. This motivate us to generalize it by removing the
requirement of independence.

2.1 Azuma-Hoeffding’s Inequality

Theorem 2 (Azuma-Hoeffding’s Inequality) Let {Z,},, is a martingale
with respect to a filtration {Fy,}. If for everyi > 1,|Z; — Z;_1| < ¢; with
probability 1, then

t2

Pr(|Z, - Zy| > t] <2exp|——
5
i=1

Azuma-Hoeffding’s inequality generalizes Hoeffding’s inequality by
letting Z, = >, (X; — E [X;]) and F, = o(X1, ..., Xp).

The proof of this theorem is in Section 3. The requirement of martingale
in Theorem 2 seems to be even harder to satisfy than the requirement of
independence. However, in many cases, we can construct a doob martingale
to apply the Azuma-Hoeffding’s inequality.

Definition 3 (Doob Martingale, Doob Sequence) Let Xi,..., X, be a se-
quence of (unnecessarily independent) random variables and f(X1,) =
f(X1,...,X,) € R bea function. Fori > 0,LetZ; = E [f(YL,,) | ?1,1'] .
Then we call {Z,},,-, a Doob martingale or a Doob sequence.

It is easy to verify that {Z,},,5, in Definition 3 is indeed a martingale w.r.t.
{Xn} by seeing

E [Z,— ‘ )?l,i—l] =E [E[f()_(l,n)

)_(1,1'] ‘ )_(1,1'—1] =E [f()_(ln)

)_(1,1‘71] =Zi1.
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Let ¥ = cr()_(l,i). We can see that Z; is #; measurable by definition. More-
over, we know that Z, = E [f()_(l,n)] and Z, = f()_(l,n).

Recall the balls-in-a-bag problem we discussed above. Define f : R" —
R by letting f(y1,y2,...,Yn) = 21=; ¥i- Then in the drawing without
replacement scenario, Y = Y1, ¥; = (13, Y2,...,Y,). Now we construct the
Doob martingale for f.

Let Z; = E [f(?l,,,) ‘ ?u]- We know that Z, = E [f(?l,n)] =E[Y] =

n- - and Z, = f(Y1,). In order to apply Azuma-Hoeffding, we need to

r+g

bound the width of the martingale |Z; — Z;_4|.
By definition,

Zi—Zi1=E [f(?l,n) ‘ ?1,1'] -E [f(?l,n) ?1,1'—1] .

If we use S; to denote the number of red balls among the first i balls, namely
S; = j‘:l Yj, then

_ _ — N~ r==S5
B[ |[Vu] =E[sTun [ 5] =504 (n-n- 222
Therefore S; = S;_1 + Y; and
—-S: —S._
Zi—Zi_lz(Sl'+(fl—i)' r l.)—(Si_1+(n—l'+1)'r—l.l
g+r—i g+r—i+l1
=M(E+Lﬁ),
g+r—i g+r—i+1

Note that r > S;_; and g > (i — 1) — S;_1, we have

Zi—Zi

Sg+r—n 1+ Sioi—r Sg+r—nS
g+r—i g+r—i+1 g+r—i
g+r—n Sic1—r S g+r—n
g+r—i\g+r—i+1)] g+r—i

Zi _Zi—l > —1.

\%

Therefore —1 < X; < 1 and we can apply Azuma-Hoeftding to Z,, — Z, to
obtain

Pr|Y-E[Y]| >t] <2exp (—%)

2.2 McDiarmids Inequality

The Doob sequence we used in the balls-in-a-bag example is a very power-
ful and general tool to obtain concentration bounds. For a model defined by
n random variables Xj, ..., X, and any quantity f(Xj,...,X,) that we want
to estimate, we can apply the Azuma-Hoeffding inequality to the Doob se-
quence of f. As shown in the previous example, the quality of the bound
relies on the width of the martingale, that is, the magnitude of |Z; — Z;_4|.
To determine the width of each |Z; — Z;_4| is relatively easy if the function
f and the variables {X;},<,<, enjoy certain nice properties.
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Definition 4 (c-Lipschitz Function) A function f(xi,-- -, x,) satisfies c-
Lipschitz condition if

Vie [n],Vxy, o xn, Yy o [f(xeee xi e ) = fxo oy x| S e

The McDiarmid’s inequality is the application of Azuma-Hoeffding
inequality to Lipschitz f and independent {X;}.

Theorem 5 (McDiarmid’s Inequality) Let f be a function on n variables
satisfying c-Lipschitz condition and X1, - - - , X,, be n independent variables.
Then we have

_ 2t
Pr|f (Xe, . Xn) —E[f (Xp,--- . Xa)]| > £] < 2e" 0.
Proof.  We use f and {X;},>; to define a Doob martingale {Z;};51:

Vi:Z =F [f(YL,,)

Xl

Then

Zi—Zi1=E [f()_(l,n) )_(1,1‘] -E [f()_(l,n) )_(1,1'—1] .

Next we try to determine the width of Z; — Z;_;. Clearly
X1}

EHH.

Zi- 71zt (B[ F(X00)

X1i-1,X; = x] -E [f()_(Ln)

and

X1i-1,X; = y] -E [f(yl,n)

Z,' - Zi—l < sup {E [f()_(l,n)
y

The gap between the upper bound and the lower bound is

sup {E f()_(m) )_(1,1'71,Xi = y] -E [f(iln) )_(l,i—l,Xi = x” .
x,y -
For every x, y and o1, ..., 0;_1,
E|f(Xin) /\ Xj=0;,X;=y|-E f(X1n) /\ Xj=0,X;=x
1<j<i-1 1<j<i-1
= Z (Pr /\ XjZO'j /\ Xj:O'j,Xl'Zy 'f(O'l,...,O'j_l,y,O','+1,...,O'n)
Oit15--0n i+1<j<n 1<j<i-1
- Pr /\ X;=0; /\ Xi=0,Xi=x -f(0'1,...,O'i_l,x,aiﬂ,...,o;,))
i+1<j<n 1<j<i-1
(@)
= Z Pr /\ ijo'jl'(f(gl,u~a0'i—1,y,5i+1,~~,0'n)_f(o'l’~~~’0-i—1’x>0-i+1’~"0'n))
Citlses0n i+1<j<n

(%)
< c.

where (©) uses independence of {X;} and (#) uses the c-Lipsichitz property

of f.
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Applying Azuma-Hoeffding, we have

212

Pr(|Z,—Zo| > t] =Pr[lf Xu---,Xp) —E[f (X0, , Xn)]| > t] < 2¢ ne.

m]
Then we examine two applications of McDiarmid’s inequality.

Example 2 (Pattern matching) Let P € {0,1}* be a fixed string. For a
random string X € {0,1}", what is the expected number of occurrences of P in
X?

The expectation of occurrence times can be easily calculated using the lin-
earity of expectations. We define n independent random variables Xy, - - - , X,
where X; denotes i-th character of X. Let Y = f(Xy,---,X,) be the number of
occurrences of P in X. Note that there are at most n — k + 1 occurrences of P in
X, and we can enumerate the first position of each occurrence. By the linearity
of expectation, we have .

n—-k+1
Elfl=—F—

We can then use McDarmid’s inequality to show that f is well-concentrated.
To see this, we note that variables in {X;} are independent and the function f
is k-Lipschitz: If we change one bit of X, the number of occurrences changes at
most k.

Therefore

Pr[|Zy—Zo| = t] = Pr[lf —E[f]] = t] < 2¢ 57

Another application of McDiarmid’s Inequality is to establish the con-

centration of chromatic number for Erds-Rényi random graphs G(n, p).

Example 3 (Chromatic Number of G(n, p)) Recall the notation G(n, p)
specifies a distribution over all undirected simple graphs with n vertices. In the
model, each of the () possible edges exists with probability p independently.
For a graph G ~ G(n, p), we use x(G) to denote its chromatic number, the
minimum number q so that G can be properly colored using q colors. There are
different ways to represent G using random variables.
The most natural way is to introduce a variable X, for every pair of ver-
ticese = {u,0} C V whereX, = 1[the edge e exists in G]. Then {X,}
are independent and the chromatic number can be written as a function
X(Xe, Xeyo o, Xe ., ). It is easy to see that y is 1-Lipschitz as removing to
adding one edge can only change the chromatic number by at most one. So by

McDarmid’s inequality, we have
(-1
Prily—Elx]l =t] < 2e2°(3)

However, this bound is not satisfactory as we need to set t = ©(n) in order to
upper bound the RHS by a constant.
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We can encode the graph G in a more efficient way while reserving the
Lipschitz and the independence property. Suppose the vertex set of G is
{v1,...,0n}. We define n random variables Y1, - - - , Y,,, where Y; encodes the
edges between v; and {vq,- -+ ,v;_1}. Once Yy, - - - , Y, are given, the graph is
known, so the chromatic number can be written as a function y(Yi, ..., Y,).
Since Y; only involves the connections between v; and vy, - -+ ,v;_1, the n vari-
ables are independent.

It is also easy to see that if Y; changes, the chromatic number changes at
most one. Hence y is 1-Lipschitz as well. Applying McDiarmid’s inequality we
have

262

Prly—E[x]l >t] <2e .
In this way, we only need t = ©(+/n) to bound the RHS.

3 Proof

3.1 Proof of Theorem 1

First, we prove the following Hoeffding’s lemma which will be the main

technical ingredient to prove the inequality.
Lemma 6 Let X be a random variable withE [X] = 0 and X € [a, b]. Then it

holds that
a®(b - a)?
8

E [e“X] < exp foralla € R.

Proof.
We first find a linear function to upper bound e** so that we could ap-
ply the linearity of expectation to bound E [e"‘X ] By the convexity of the

exponential function and as illustrated in the figure below, we have

e < —(x—a)+e” foralla<x <b.
-a

Thus,

6
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eah — ea —a b
axy o _ aa _ __“ ab aa
E[e ]— b—a ( a)+e b—ae +b_ae
_ paa b _ a ea(b—a)
b-a b-a
=% (1-0+0¢) (9=—b;fa,t=a(b—a>)
2 e9(t)

where
g(t) = =0t +log(1 — 0 + Oe’).

By Taylor’s theorem, for every real t there exists a § between 0 and ¢ such

that,
’ 1 ’’
9(t) = g(0) +t9'(0) + 29" ()"
Note that,
g(0) = 0;
et
0)= -0+ —25
g +1—0+9e’t:0
=0;
., Oe’ (1 — 0 + Oe’) — Oe’
g8 = 24 )
(1= 0+0e)
(- 0)0e!
= =0+ 0e)
1-60)0
— ( ) — (Z — et)
62z +2(1 - )9 + L=
(1-6)0
<
S 2010 +2(1-0)0 (z>0)
_ 1
=
Thus . L1 .
< og 2 Yol 2 e
g(t) <0+t 0+2t 1 8t 80{ (b-a)
Therefore, E [e**] < exp (M) holds. m]

Armed with Hoeffding’s lemma, it is routine to prove Hoeffding’s in-
equality.
Proof. [Proof of Theorem 1]

First note that we can assume E [X;] = 0 and therefore p = 0 (if not
so, replace X; by X; — E [X;]). By symmetry, we only need to prove that

Pr [X > t] < exp (—ﬁj_am . Since
E aX
Pr(X > ¢] 20 pr [e“X > e < [:at |
and .
sles] sl < ale),
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applying Hoeffding’s lemma for each E [e“Xi] yields

a®(b; — ai)z)

E [e"‘X"] < exp ( S

Leta = we have,

4t
Xty (bi—ai)??

nE[e*Xi 2 I
Pr(X=>t] < H—[] < exp (—at + % Z(bi - ai)z)
i=1

ea't

B 212
- (‘2?_1@,- = >) '

3.2 Proof of Theorem 2

Now we will sketch a proof of the Azuma-Hoeffding, which is quite similar
to our proof of the Hoeffding inequality.
Proof.  [Proof of Theorem 2]

Recall when we were trying to prove the Hoeffding inequality, the most

difficult part is to estimate the term

n

l_[ ea(ZiZi—l)l )

i=1

E [¢%r]| = e“% . E

In the case of Azuma-Hoeffding, we can use the property of martingales
instead of independence to obtain a bound of this term. To see this, we have

ﬁ elZZi—Zi—l |?—”1] l

i=1

l_i aZi—Zi_ 1E aZn Zn1 |ﬂ 1]]

n

H e¥Zi=Zi-1

i=1

E =E|E

The bounds then follows by an induction argument and a conditional

expectation version of Hoeffding lemma:

ac?

E [e“(z"fz"‘l) | Tn_l] <e I .

The proof is almost the same as our proof of Hoeffding lemma in the last

lecture. m]
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