
[AI2613 Lecture 6]: Concentration Inequalities, Mar-
tingale
June 15, 2023

1 Chernoff Bounds

Recall the Markov inequality and Chebyshev’s inequality we introduced
before. They are used to prove that a random variable is concentrated
around its expectation.

If we apply Markov inequality to

Pr [𝑓 (𝑋 ) ≥ 𝑓 (𝑡)]

with 𝑓 (𝑥) = 𝑒𝛼𝑥 where 𝛼 > 0, then the bound amounts to bound E
[
𝑒𝛼𝑋

]
which is the moment generating function of 𝑋 .

When the random variable 𝑋 can be written as the sum of independent
Bernoulli variables, its moment generating function is easy to estimate and
we obtain sharp concentration bounds.

Theorem 1 (Chernoff Bound) . Let 𝑋1, . . . , 𝑋𝑛 be independent random
variables such that 𝑋𝑖 ∼ Ber(𝑝𝑖 ) for each 𝑖 = 1, 2, . . . , 𝑛. Let 𝑋 =

∑𝑛
𝑖=1𝑋𝑖

and denote 𝜇 ≜ E [𝑋 ] = ∑𝑛
𝑖=1 𝑝𝑖 , we have

Pr [𝑋 ≥ (1 + 𝛿)𝜇] ≤
(

𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇
If 0 < 𝛿 < 1, then we have

Pr [𝑋 ≤ (1 − 𝛿)𝜇] ≤
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝜇
Proof. We only prove the upper tail bound and the proof of lower tail
bound is similar. For every 𝛼 > 0, we have

Pr [𝑋 ≥ (1 + 𝛿)𝜇] = Pr
[
𝑒𝛼𝑋 ≥ 𝑒𝛼 (1+𝛿 )𝜇

]
≤

E
[
𝑒𝛼𝑋

]
𝑒𝛼 (1+𝛿 )𝜇

.

Therefore, we need to estimate the moment generating function E
[
𝑒𝛼𝑋

]
.

Since 𝑋 =
∑𝑛

𝑖=1𝑋𝑖 is the sum of independent Bernoulli variables, we have

E
[
𝑒𝛼𝑋

]
= E

[
𝑒𝛼

∑𝑛
𝑖=1 𝑋𝑖

]
= E

[
𝑛∏
𝑖=1

𝑒𝛼𝑋𝑖

]
=

𝑛∏
𝑖=1

E
[
𝑒𝛼𝑋𝑖

]
.

Since 𝑋𝑖 ∼ Ber(𝑝𝑖 ), we can compute E
[
𝑒𝛼𝑋𝑖

]
directly:

E
[
𝑒𝛼𝑋𝑖

]
= 𝑝𝑖𝑒

𝛼 + (1 − 𝑝𝑖 ) = 1 + (𝑒𝛼 − 1)𝑝𝑖 ≤ 𝑒 ( (𝑒
𝛼−1)𝑝𝑖 ) .

Therefore,

E
[
𝑒𝛼𝑋

]
≤

𝑛∏
𝑖=1

𝑒 ( (𝑒
𝛼−1)𝑝𝑖 ) = 𝑒 ( (𝑒𝛼−1)

∑𝑛
𝑖=1 𝑝𝑖) = 𝑒 ( (𝑒

𝛼−1)𝜇 ) .
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Therefore,

Pr [𝑋 ≤ (1 + 𝛿)𝜇] ≤ E [𝑒𝛼𝑥 ]
𝑒𝛼 (1+𝛿 )𝜇

≤
(
𝑒 (𝑒

𝛼−1)

𝑒 (𝛼 (1+𝛿 ) )

)𝜇
Note that above holds for any 𝛼 > 0. Therefore, we can choose 𝛼 so as
to minimize 𝑒 (𝑒

𝛼 −1)

𝑒 (𝛼 (1+𝛿 ) ) . To this end, we let
(
𝑒 (𝑒

𝛼 −1)

𝑒 (𝛼 (1+𝛿 ) )

) ′
= 0. This gives 𝛼 =

log(1 + 𝛿). Therefore

Pr [𝑋 ≤ (1 + 𝛿)𝜇] ≤
(
𝑒 (𝑒

𝛼−1)

𝑒 (𝛼 (1+𝛿 ) )

)𝜇
=

(
𝑒𝛿

(1 + 𝛿) (1+𝛿 )

)𝜇
.

□
The following form of Chernoff bound is more convenient to use (but

weaker):

Corollary 2 For any 0 < 𝛿 < 1,

Pr [𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp
{(
−𝛿

2

3
𝜇

)}
Pr [𝑋 ≤ (1 − 𝛿)𝜇] ≤ exp

{(
−𝛿

2

2
𝜇

)}
Proof. We only prove the upper tail. It suffices to verify that for 0 < 𝛿 < 1,
we have

𝑒𝛿

(1 + 𝛿) (1+𝛿 )
≤ exp

{(
−𝛿

2

3

)}
Taking logarithm of both sides, this is equivalent to

𝛿 − (1 + 𝛿) ln(1 + 𝛿) ≤ −𝛿
2

3

Let 𝑓 (𝛿) = 𝛿 − (1 + 𝛿) ln(1 + 𝛿) + 𝛿2

3 and note that

𝑓 ′ (𝛿) = − ln(1 + 𝛿) + 2
3
𝛿, 𝑓 ′′ (𝛿) = − 1

1 + 𝛿
+ 2
3
.

Then for 0 < 𝛿 < 1/2, 𝑓 ′′ (𝛿) < 0, and for 1/2 < 𝛿 < 1, 𝑓 ′′ (𝛿) > 0. Therefore,
𝑓 ′ (𝛿) first decreases and then increases in [0, 1]. Also note that 𝑓 ′ (0) = 0,
𝑓 ′ (1) < 0 and 𝑓 ′ (𝛿) ≤ 0 when 0 ≤ 𝛿 ≤ 1. Therefore 𝑓 (𝛿) ≤ 𝑓 (0) = 0. □

Example 1 (Tossing 𝑝-coins) . Consider a 𝑝-coin that we get a head with
probability 𝑝 when tossing it. If we toss a 𝑝-coin 𝑛 times, the average number
of heads is 𝑝𝑛.We want to determine the value 𝛿 such that with high probabil-
ity (say 99%), the total number of heads is in the interval of [(1 − 𝛿)𝑝𝑛, (1 +
𝛿)𝑝𝑛]. We use Chernoff bound to determine 𝛿 .

Let 𝑋 denote the total number of heads, and 𝑋𝑖 ∼ Ber (𝑝) be the indicator
of whether the 𝑖-th toss gives a head. Then by Chernoff bound, we have

Pr [|𝑋 − 𝑝𝑛 | ≥ 𝛿 · 𝑝𝑛] ≤ 2 exp
{(
−𝛿

2

3
· 𝑝𝑛

)}
≤ 0.01

So if 𝑝 is a constant, it suffices to choose

𝛿 = Ω

(
1
√
𝑛

)
.
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2 Hoeffding’s Inequality

One of annoying restrictions of Chernoff bound is that each 𝑋𝑖 needs to be
a Bernoulli random variable. We first relax this requirement by introducing
Hoeffding’s inequality which allows 𝑋𝑖 to follow any distribution, provided
its value is almost surely bounded.

Theorem 3 (Hoeffding’s Inequality) Let 𝑋1, . . . , 𝑋𝑛 be independent random
variables where each 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖 ] for certain 𝑎𝑖 ≤ 𝑏𝑖 with probability 1. Let
𝑋 =

∑𝑛
𝑖=1𝑋𝑖 and 𝜇 ≜ E [𝑋 ] = ∑𝑛

𝑖=1 E [𝑋𝑖 ], then

Pr [|𝑋 − 𝜇 | ≥ 𝑡] ≤ 2 exp
(
− 2𝑡2∑𝑛

𝑖=1 (𝑏𝑖 − 𝑎𝑖 )2

)
for all 𝑡 ≥ 0.

It is instructive to compare Hoeffding and Chernoff when 𝑋𝑖 ’s are in-
dependent Bernoulli variables. Formally, let 𝑋1, . . . , 𝑋𝑛 be i.i.d. random
variables where 𝑋𝑖 ∼ Ber(𝑝) for all 𝑖 = 1, . . . , 𝑛. Set 𝑋 =

∑𝑛
𝑖=1𝑋𝑖 and denote

E [𝑋 ] = 𝑛𝑝 by 𝜇. By Hoeffding’s inequality, we have

Pr [|𝑋 − 𝜇 | ≥ 𝑡] ≤ 2 exp
(
−2𝑡2

𝑛

)
.

By Chernoff Bound, we have

Pr [|𝑋 − 𝜇 | ≥ 𝑡] ≤ 2 exp
(
− 𝑡2

3𝑝𝑛

)
.

Comparing the exponent, it is easy to see that for 𝑝 > 1/6, Hoeffding’s
inequality is tighter up to a certain constant factor. However, for smaller 𝑝 ,
Chernoff bound is significantly better than Hoeffding’s inequality.

We consider the balls-in-a-bag problem. There are 𝑔 green balls and 𝑟 red
balls in a bag. These balls are the all same except for the color. We want to
estimate the ratio 𝑟

𝑟+𝑔 by drawing balls. There are two scenarios.

• Draw balls with replacement. Let 𝑋𝑖 = 1[the 𝑖-th ball is red]. Let 𝑋 =∑𝑛
𝑖=1𝑋𝑖 . Then clearly each 𝑋𝑖 ∼ Ber

(
𝑟

𝑟+𝑔

)
and E [𝑋 ] = 𝑛 · 𝑟

𝑟+𝑏 .

Since all 𝑋𝑖 ’s are independent, we can directly apply Hoeffding’s inequal-
ity and obtain

Pr [|𝑋 − E [𝑋 ] | ≥ 𝑡] ≤ 2 exp
(
−2𝑡2

𝑛

)
.

• Draw balls without replacement. Again we let 𝑌𝑖 = 1[the 𝑖-th ball is red],
then unlike the case of drawing with replacement, variables in {𝑌𝑖 } are
dependent. Let 𝑌 =

∑𝑛
𝑖=1 𝑌𝑖 . We first calculate E [𝑌 ].

For every 𝑖 ≥ 1, E [𝑌𝑖 ] is the probability that the 𝑖-th draw is a red ball.
Note that drawing without replacement is equivalent to first drawing a
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uniform permutation of 𝑟 + 𝑔 balls and drawing each ball one by one in
that order. Therefore, the probabilty of 𝑌𝑖 = 1 is 𝑟 · (𝑟+𝑔−1)!

(𝑟+𝑔)! = 𝑟
𝑟+𝑔 . So we

have E [𝑌 ] = 𝑛 · 𝑟
𝑟+𝑔 .

However, since {𝑌𝑖 } are dependent, we cannot apply Hoeffding’s in-
equality directly. This motivate us to generalize it by removing the
requirement of independence.

3 Martingale

We develop the theory of martingale, which is a core concept in probability
theory. We use martingale to get rid of the independence requirement in the
concentration inequalities mentioned above.

Consider a fair gambling game in which the expected gain in each round
is zero. As a result, regardless of how much one bets in each round, the
money in expectation remains the same. The balances after each round
form a martingale.

Definition 4 (Martingale) Let {𝑋𝑛}𝑛≥0 and {𝑍𝑛}𝑛≥0 be two sequences of
random variables. Let 𝑍𝑛 =

∑𝑛
𝑡=0𝑋𝑡 .1 We say {𝑍𝑛}𝑛≥0 is a martingale w.r.t. 1 Consider the problem of fair gambling

where 𝑋𝑛 is the gain of 𝑛-th round and
𝑍𝑛 =

∑𝑛
𝑡=1𝑋𝑛 . {𝑍𝑛 }𝑛≥0 is not necessarily

a Markov chain. The value 𝑋𝑛 may depend
on information before round 𝑛 − 1.

{𝑋𝑛}𝑛≥0 if
E [𝑍𝑛+1 | 𝑋0, 𝑋1 . . . , 𝑋𝑛] = 𝑍𝑛 .

Sometimes we say a single sequence {𝑋𝑛}𝑛≥0 is a martingale if it is a mar-
tingale w.r.t. itself. Formally, if for every 𝑛 ≥ 0, it holds that

E [𝑋𝑛+1 | 𝑋0, . . . , 𝑋𝑛] = 𝑋𝑛 .

For convenience, from now on we use 𝑋 𝑖, 𝑗 =
(
𝑋𝑖 , 𝑋𝑖+1 . . . , 𝑋 𝑗

)
to simplify

the notations. The conditional expectation E
[
𝑍𝑛+1

��� 𝑋 0,𝑛

]
is equivalent to

E
[
𝑍𝑛+1

��� 𝜎 (𝑋 0,𝑛)
]
where 𝜎 (𝑋 0,𝑛) is the 𝜎-algebra generated by 𝑋0, . . . , 𝑋𝑛 .

The motivates us to define martingale in a more general way.

Definition 5 (Martingale (defined by filtration)) Let {F𝑛}𝑛≥0 be a sequence
of 𝜎-algebras. We call such 𝜎-algebra sequence a filtration if it satisfies

F0 ⊆ F1 ⊆ · · · ⊆ F𝑛 ⊆ F𝑛+1 ⊆ · · · .

Given a filtration {F𝑛}𝑛≥0, let {𝑍𝑛}𝑛≥0 be a stochastic process that 𝑍𝑛 is
F𝑛-measurable for every 𝑛 ≥ 0. Then we say {𝑍𝑛}𝑛≥0 is a martingale w.r.t.
{F𝑛}𝑛≥0 if for every 𝑛 ≥ 0

E [𝑍𝑛+1 |F𝑛] = 𝑍𝑛 .
If E [𝑍𝑛+1 | F𝑛 ] ≤ 𝑍𝑛 in Definition 5,
we call {𝑍𝑛 }𝑛≥0 a supermartingale w.r.t.
{F𝑛 }𝑛≥0. Similarly, if E [𝑍𝑛+1 | F𝑛 ] ≥ 𝑍𝑛 ,
we call it a submartingale.

Example 2 (1-D Random Walk) Consider a random walk on ℤ starting
from 0. The probability to the left and the probability to the right are both 1

2
at each step. Denote the action at the 𝑛-th step by a uniform random variable
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𝑋𝑛 ∈ {−1, +1}. Let 𝑆𝑛 =
∑𝑛

𝑘=0𝑋𝑘 . Then we can verify {𝑆𝑛}𝑛≥0 is a martingale
w.r.t. {𝑋𝑛}𝑛≥0 (or w.r.t. {𝑆𝑛}𝑛≥0) by noticing that

E
[
𝑆𝑛+1

��� 𝑋 0,𝑛

]
= E

[
𝑆𝑛 + 𝑋𝑛+1

��� 𝑋 0,𝑛

]
= 𝑆𝑛 + E

[
𝑋𝑛+1

��� 𝑋 0,𝑛

]
= 𝑆𝑛 .

More generally, if E
[
𝑋𝑛+1

��� 𝑋 0,𝑛

]
= 𝜇, we define 𝑌𝑘 = 𝑋𝑘 − 𝜇 and 𝑆 ′𝑛 ≜∑𝑛

𝑘=0 𝑌𝑘 = 𝑆𝑛 − (𝑛 + 1)𝜇. Then 𝑆 ′𝑛 is a martingale w.r.t. {𝑌𝑛}𝑛≥0.

Example 3 Consider a sequence of random variables {𝑋𝑛}𝑛≥0 where E
[
𝑋𝑛

��� 𝑋 0,𝑛−1
]
=

1 for all 𝑛 ≥ 1. Let 𝑃𝑛 =
∏𝑛

𝑘=0𝑋𝑘 . Then we can verify {𝑃𝑛}𝑛≥0 is a martingale
w.r.t. {𝑋𝑛}𝑛≥0 by verifying that

E
[
𝑃𝑛+1

��� 𝑋 0,𝑛

]
= E

[
𝑃𝑛 · 𝑋𝑛+1

�� 𝑋0,𝑛
]
= 𝑃𝑛 · E

[
𝑋𝑛+1

��� 𝑋 0,𝑛

]
= 𝑃𝑛 .

Example 4 (Galton-Watson Process) Recall the Galton-Watson process
we discussed in the last lecture. Suppose that all the individuals reproduce
independently of each other and have the same offspring distribution. Let
𝐺𝑡 be the number of individuals of the 𝑡-th generation. Each individual of
generation 𝑡 gives birth to a random number of children of generation 𝑡 +
1. Denote by 𝑋𝑡,𝑘 the number of children of the 𝑘-th individual in the 𝑡-th
generation. Assume that 𝑋𝑡,𝑘 are i.i.d. and let 𝜇 ≜ E

[
𝑋𝑡,𝑘

]
. Then we have

𝐺𝑡+1 =
∑𝐺𝑡

𝑘=1𝑋𝑡,𝑘 . Thus,

E [𝐺𝑡+1 | 𝐺𝑡 ] = E

[
𝐺𝑡∑
𝑘=1

𝑋𝑡,𝑘

����� 𝐺𝑡

]
= 𝐺𝑡 · E

[
𝑋𝑡,1

]
= 𝜇𝐺𝑡 .

Define𝑀𝑡 = 𝜇−𝑡𝐺𝑡 . Then

E [𝑀𝑡+1 | 𝐺𝑡 ] = 𝜇−𝑡−1E [𝐺𝑡+1 | 𝐺𝑡 ] = 𝜇−𝑡𝐺𝑡 = 𝑀𝑡 .

That is, {𝑀𝑡 }𝑡≥0 is a martingale w.r.t. {𝐺𝑡 }𝑡≥0.

Example 5 (Pólya’s urn) Suppose there are some white balls and black balls
in an urn. All of these balls are identical except the colors. Consider the fol-
lowing stochastic process: each round we pick a ball uniformly at random and
observe its color; then we return the ball, and add an additional ball of the
same color into the urn. We repeat the process, and our goal is to study the
sequence of colors of the selected balls. Example 5 shows that 𝑋𝑛 does not have to

be i.i.d..W.l.o.g. assume that we start from only one white ball and one black ball
in the urn, and the index of rounds starts from 2. Then after round 𝑛, there are
exactly 𝑛 balls in the urn. Let 𝑋𝑛 be the number of black balls after round 𝑛,
and 𝑍𝑛 = 𝑋𝑛

𝑛 is the ratio of black balls after round 𝑛. Clearly 𝑍2 = 1
2 . Then we

have

E
[
𝑍𝑛+1

�� 𝑋2,𝑛
]
=

1
𝑛 + 1

E
[
𝑋𝑛+1

��� 𝑋 2,𝑛

]
=

1
𝑛 + 1

(𝑍𝑛 (𝑋𝑛 + 1) + (1 − 𝑍𝑛)𝑋𝑛) =
𝑍𝑛 + 𝑋𝑛

𝑛 + 1
= 𝑍𝑛 .

That is, {𝑍𝑛}𝑛≥2 is a martingale w.r.t. {𝑋𝑛}𝑛≥2.
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