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1 Recurrence and Positive Recurrence
In fact P𝑖 [𝑇𝑖 < ∞] = 1 ⇐⇒ P𝑖 [𝑁𝑖 =
∞] = 1 ⇐⇒ E𝑖 [𝑁𝑖 ] = ∞. I will leave the
proof of this as an exercise.

Recall that we say a state 𝑖 is recurrent if P𝑖 [𝑇𝑖 < ∞] = 1. This is equivalent
to E𝑖 [𝑁𝑖 ] = ∞. Otherwise, we say the state is transient. A transient state
𝑗 will be visited for finite times with probability 1. From Proposition 3 Here we follow the notations of the last

lecture, that is: 𝑋0, 𝑋1, . . . , 𝑋𝑡 , . . . is a
sequence of variables that follows the
Markov chain 𝑃 . 𝑇𝑖 ≜ inf {𝑡 > 0 : 𝑋𝑡 = 𝑖 },
𝑁𝑖 ≜

∑∞
𝑡=0 𝟙[𝑋𝑡 = 𝑖 ], P𝑖 [ · ] = Pr [ · |𝑋0 = 𝑖 ]

and E𝑖 [ · ] = E [ · |𝑋0 = 𝑖 ].

of last lecture, we know that recurrence is a class property, that is, given
a recurrent state 𝑖 , all the other states that 𝑖 can reach in finite steps are
also recurrent. We are only concerned with irreducible Markov chains in
this lecture. So we may say a Markov chain is recurrent or transient in the
future.

Example 1 (Drunk person and drunk bird) Imagine a random walk on
a grid that we pick a direction uniformly at random at each time step. Can
we go back to the original point with probability 1? Or equivalently, is this
Markov chain recurrent or transient?

First we consider the one-dimensional grid. Let 𝑋0 = 0 and 𝑋𝑡+1 = 𝑋𝑡 + Δ

where Δ is uniformly at random picked from {−1, 1}. Then,

E0 [𝑁0] = E0 [
∞∑
𝑡=0

𝟙[𝑋𝑡 = 0]] =
∞∑
𝑡=0

P0 [𝑋𝑡 = 0] =
∞∑

𝑚=0
P0 [𝑋2𝑚 = 0] .

where the last equality follows from the fact that we can not go back within Stirling’s formula: 𝑛! =
√
2𝜋𝑛

(𝑛
𝑒

)𝑛 (1 +
𝑜 (1) ) .exactly odd steps. Then let’s compute P0 [𝑋2𝑚 = 0] using the Stirling’s formula.

For𝑚 ≥ 1,

P0 [𝑋2𝑚 = 0] =
(2𝑚
𝑚

)
22𝑚

≈
√
4𝜋𝑚

( 2𝑚
𝑒

)2𝑚
2𝜋𝑚

(𝑚
𝑒

)2𝑚 · 2−2𝑚 =
1

√
𝜋𝑚

.

Thus, E0 [𝑁0] =
∑∞

𝑚=0 P0 [𝑋2𝑚 = 0] ≈ 1 +∑∞
𝑚=1

1√
𝜋𝑚

which is divergent. This
indicates that the Markov chain for random walk on one-dimensional grid is
recurrent.

For 𝑑-dimensional grid, we regard the game as independently pick Δ𝑖

u.a.r. from {−1, 1} for 𝑖 ∈ [𝑑] at each time step and walk to 𝑋𝑡+1 = 𝑋𝑡 +
(Δ1,Δ2, . . . ,Δ𝑑 ). So we have that P𝑖 [𝑋2𝑚 = 0] = (P𝑖 [𝑋2𝑚 (1) = 0])𝑑 ≈(

1√
𝜋𝑚

)𝑑
. We know that 1 + ∑∞

𝑚=1

(
1√
𝜋𝑚

)𝑑
is divergent if and only if 𝑑 ≤ 2.

Thus, only if the dimension of the grid is 1 or 2, the random walk is recurrent.

Definition 1 (Positive recurrence) If a state 𝑖 is recurrent and E𝑖 [𝑇𝑖 ] < ∞,
we say it is positive recurrent. If the state is recurrent but with E𝑖 [𝑇𝑖 ] = ∞,
then we say it is null recurrent.

Example 2 (Drunk person) We have proved that the Markov chain of drunk
person is recurrent. One can show that, even in one-dimension, the chain is
null transient (exercise).

https://en.wikipedia.org/wiki/Stirling%27s_approximation
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1.1 1-D Random Walk

Consider the following one-dimensional random walk:

0 1 2 · · · 𝑛 · · ·1 − 𝑝
1 − 𝑝 1 − 𝑝 1 − 𝑝 1 − 𝑝

𝑝 𝑝 𝑝 𝑝

Let 𝑋𝑡 be the position at time step 𝑡 . Let 𝑇𝑖→𝑗 be the first hitting time of
state 𝑗 starting from 𝑖 , that is, 𝑇𝑖→𝑗 = min {𝑡 > 0|𝑋𝑡 = 𝑗 ∧ 𝑋0 = 𝑖}. Define
event A = [the first step is to the right]. Then we consider the problem that
when will this Markov chain be recurrent. Note that

Pr [𝑇0→0 < ∞] = Pr
[
𝑇0→0 < ∞|Ā

]
Pr

[
Ā
]
+ Pr [𝑇0→0 < ∞|A] Pr [A]

= (1 − 𝑝) · 1 + 𝑝 · Pr [𝑇1→0 < ∞] , (1)

Pr [𝑇1→0 < ∞] = Pr
[
𝑇1→0 < ∞|Ā

]
Pr

[
Ā
]
+ Pr [𝑇1→0 < ∞|A] Pr [A]

= (1 − 𝑝) · 1 + 𝑝 · Pr [𝑇2→0 < ∞] , (2)

Pr [𝑇2→0 < ∞] = Pr [𝑇2→1 < ∞∧𝑇1→0 < ∞]
= Pr [𝑇2→1 < ∞] · Pr [𝑇1→0 < ∞]
= Pr [𝑇1→0 < ∞]2 . (3)

Let 𝑦 ≜ Pr [𝑇1→0 < ∞] for brevity. Combine Equation (2) and Equation (3),
we have 𝑦 = 1 − 𝑝 + 𝑝𝑦2 which then yields 𝑦 = 1 or 𝑦 = 1−𝑝

𝑝 . By Equation (1),
Pr [𝑇0→0 < ∞] = 1 or 2 − 2𝑝 .

• When 𝑝 < 1
2 , 2− 2𝑝 is meaningless as a probability. So Pr [𝑇0→0 < ∞] = 1

and the Markov chain is recurrent.

• When 𝑝 = 1
2 , 2 − 2𝑝 = 1. The Markov chain is also recurrent in this

situation.

• When 𝑝 > 1
2 , we verify that Pr [𝑇0→0 < ∞] < 1, and therefore

Pr [𝑇0→0 < ∞] = 2 − 2𝑝 . Let {Δ𝑘 }∞𝑘=0 be a sequence of i.i.d. random
variables with

Δ𝑘 =
+1, w.p. 𝑝

−1, w.p. 1 − 𝑝
.

Given a sufficiently large 𝑛 ∈ ℕ, we can walk to 𝑛 from 0 in 𝑛 steps (i.e.
𝑋𝑛 = 𝑛) with probability 𝑝𝑛 > 0. Assume that we have arrived at 𝑛,
consider the probability that we go back to 0 from 𝑛 in exactly 𝑘 steps.
Apparently, this probability is zero when 𝑘 < 𝑛. For every 𝑘 ≥ 𝑛, we
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upper bound the probability Pr [𝑇𝑛→0 = 𝑘]:

Pr [𝑇𝑛→0 = 𝑘] ≤ Pr

[
𝑘∑
𝑡=1

Δ𝑡 = −𝑛
]

≤ Pr

[
𝑘∑
𝑡=1

Δ𝑡 − E

[
𝑘∑
𝑡=1

Δ𝑡

]
≤ −𝑛 − E

[
𝑘∑
𝑡=1

Δ𝑡

] ]

≤ exp

−
2𝑘

(
𝑛+(2𝑝−1)𝑘

𝑘

)2
4

.
where the third inequality follows from the Hoeffding’s inequality.

Then we calculate the probability that we can go back from 𝑛 to 0. By
union bound,

Pr [𝑇𝑛→0 < ∞] = Pr

[⋃
𝑘≥𝑛

[𝑇𝑛→0 = 𝑘]
]

≤
∞∑
𝑘=𝑛

Pr [𝑇𝑛→0 = 𝑘]

≤ exp{−(2𝑝 − 1)𝑛}
∞∑
𝑘=𝑛

exp
{
−𝑛2

2𝑘
− (2𝑝 − 1)2𝑘

2

}
.

Note that
∞∑
𝑘=𝑛

exp
{
−𝑛2

2𝑘

}
· exp

{
− (2𝑝 − 1)2𝑘

2

}
≤

∞∑
𝑘=𝑛

exp
{
− (2𝑝 − 1)2𝑘

2

}
=

exp
{
− (2𝑝−1)2

2 𝑛
}

1 − exp
{
− (2𝑝−1)2

2

}
Thus,

Pr [𝑇𝑛→0 < ∞] ≤
exp

{
− (2𝑝−1)2

2 𝑛 − (2𝑝 − 1)𝑛
}

1 − exp
{
− (2𝑝−1)2

2

} . (4)

We can find a sufficiently large constant 𝑛 such that Pr [𝑇𝑛→0 < ∞] < 1
since the RHS of Equation (4) is exponentially small with regard to 𝑛. So
for sufficiently large 𝑛, the probability that we walk to 𝑛 and never come
back to 0 is larger than 𝑝𝑛 · Pr [𝑇𝑛→0 = ∞] > 0. Thus, this Markov chain
is transient.

Now we verify that the Markov chain is positive recurrent when 𝑝 < 1
2

and null recurrent when 𝑝 = 1
2 . Note that

𝑇0→0 = 𝟙[Ā] · 1 + 𝟙[A] (1 +𝑇1→0) (5)

𝑇1→0 = 𝟙[Ā] · 1 + 𝟙[A] (1 +𝑇2→0) (6)

𝑇2→0 = 𝑇2→1 +𝑇1→0. (7)

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
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Note that E [𝑇2→1] = E [𝑇1→0]. Taking the expectation of Equation (6) and
combining with Equation (7), we have

E [𝑇1→0] = 1 − 𝑝 + 𝑝 (1 + 2E [𝑇1→0]),

which yields E [𝑇1→0] = 1
1−2𝑝 . Take the expectation of Equation (5), we get

E [𝑇0→0] = 1−𝑝
1−2𝑝 . Thus:

• When 𝑝 = 1
2 , E [𝑇0→0] = ∞ and the Markov chain is null recurrent.

• When 𝑝 < 1
2 , E [𝑇0→0] < ∞ and the Markov chain is positive recurrent.

2 Some Applications

2.1 Galton-Watson Process

The model was formulated by F. Galton in the study of the survival and
extinction of family names. In the nineteenth century, there was concern
amongst the Victorians that aristocratic surnames were becoming extinct.
In 1873, Galton originally posed the question regarding the probability of
such an event, and later H. W. Watson replied with a solution.

Using more modern terms, the process can be defined formally as fol-
lows:

Definition 2 (Galton-Watson Process) Suppose that all the individuals re-
produce independently of each other and have the same offspring distribution.
More precisely, let 𝐺𝑡 denote the number of individuals of 𝑡-th generation:

• We start from the zero generation. For convenience, let 𝐺0 = 1.

• Each individual of generation 𝑡 gives birth to a random number of children
of generation 𝑡 + 1. That is, ∀𝑡 ≥ 0 and 𝑖 ∈ [𝐺𝑡 ], let 𝑋𝑡,𝑖 denote the number
of children of the 𝑖-th individual in the 𝑡-th generation. Then

{
𝑋𝑡,𝑖

}
is an

array of i.i.d. random variables with Pr
[
𝑋𝑡,𝑖 = 𝑘

]
= 𝑝𝑘 .

• All individuals of generation 𝑡 + 1 are children of individuals of generation
𝑡 : It is clear that the process {𝐺𝑡 }𝑡≥0 is a

Markov chain.
𝐺𝑡+1 =

𝐺𝑡∑
𝑖=1

𝑋𝑡,𝑖

Denote by 𝜌 the probability of extinction, namely

𝜌 ≜ Pr [extinction] = Pr [∪𝑡≥1 {𝐺𝑡 = 0}] .

Then the question is to determine the value of 𝜌 . First we consider two
trivial situations:

• When 𝑝0 = 0, it is clear that there will be offspring and 𝜌 = 0.
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• When 𝑝0 > 0 and 𝑝0 + 𝑝1 = 1, we can verify that 𝜌 = 1. We know that

E [𝐺𝑡+1 |𝐺𝑡 ] = 𝑝1 ·𝐺𝑡 .

Compute the expectation of both sides, we have E [𝐺𝑡+1] = 𝑝1E [𝐺𝑡 ].
This yields that when 𝑡 → ∞, Pr [𝐺𝑡 ≥ 1] ≤ E [𝐺𝑡 ] = 𝑝𝑡1E [𝐺0] → 0.

Then we assume that 𝑝0 > 0 and 𝑝0 + 𝑝1 < 1. By the independence of each
individual and the Markov property, we can calculate 𝜌 as follows:

𝜌 =
∞∑
𝑘=0

Pr [extinction ∧𝐺1 = 𝑘]

=
∞∑
𝑘=0

Pr [extinction|𝐺1 = 𝑘] 𝑝𝑘

=
∞∑
𝑘=0

𝜌𝑘𝑝𝑘 . (8)

Let𝜓 (𝑧) ≜ ∑∞
𝑘=0 𝑝𝑘𝑧

𝑘 . Then Equation (8) yields that 𝜌 is a fixed point
of𝜓 , i.e.,𝜓 (𝜌) = 𝜌 . By direct calculation we know𝜓 is an increasing and
convex function on [0, 1] with𝜓 (0) = 𝑝0 and𝜓 (1) = 1. Then there can be
two types of𝜓 depending on whether𝜓 ′ (1) is larger than 1 as the following
figure shows.

0
1

1

𝑓 (𝑧) = 𝑧

r

Type 1
Type 2

When𝜓 ′ (1) =
∑∞

𝑘=1 𝑘𝑝𝑘 = E [𝑋𝑡−𝑖 ] ≤ 1, 𝑧 = 1 is the only fixed point
of𝜓 which corresponds to the Type 1 in the figure. That is to say, when
E [𝑋𝑡−𝑖 ] ≤ 1, we have 𝜌 = 1.

When E [𝑋𝑡−𝑖 ] > 1 (Type 2), although there are two fixed points of𝜓 :
𝑟 and 1, we claim that 𝜌 = 𝑟 rather than 1 by showing that 𝜌 ≤ 𝑟 . Let
𝑞𝑡 ≜ Pr [𝐺𝑡 = 0]. Then 𝑞𝑡 ≤ 𝑞𝑡+1 < 1 since 𝐺𝑡 = 0 can always yields
𝐺𝑡+1 = 0. We induct on 𝑡 to show that 𝑞𝑡 ≤ 𝑟 :

• When 𝑡 = 0, it is obvious that 𝑞0 = 0 < 𝑟 .

• Assume that 𝑞𝑡 ≤ 𝑟 . Since 𝑞𝑡+1 =
∑∞

𝑘=0 𝑝𝑘𝑞
𝑘
𝑡 = 𝜓 (𝑞𝑡 ) and𝜓 is an

increasing function, 𝑞𝑡+1 = 𝜓 (𝑞𝑡 ) ≤ 𝜓 (𝑟 ) = 𝑟 .
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We know that 𝜌 = lim𝑡→∞ 𝑞𝑡 and 𝑞𝑡 ≤ 𝑟 for all 𝑡 ≥ 0. Thus 𝜌 ≤ 𝑟 . However,
we have shown that 𝜌 is a fixed point of𝜓 . So 𝜌 = 𝑟 when E [𝑋𝑡−𝑖 ] > 1. In
conclusion, 𝜌 = 1 iff E [𝑋𝑡−𝑖 ] ≤ 1.

2.2 2-SAT

SAT is the problem of determining whether a CNF formula has satisfying
assignments. 𝑘-SAT is the special cases of SAT that the clauses of the CNF
formula consist of exact 𝑘 literals. For example,

𝜙 = (𝑥 ∨ 𝑦) ∧ (𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑧)

is a 2-CNF formula and 𝑥 = 𝑦 = 𝑧 = 1 is one of its satisfying assignments.
SAT is NP-complete and we have 𝑘-SAT ∈ NP for 𝑘 ≥ 3. One can use We will extend the algorithm to solving

3-SAT in the homework!an algorithm for finding strongly connected components to solve 2- SAT
problem in linear time. Nevertheless, we introduce a simple randomized
algorithm that can also solve this problem in polynomial-time with high
probability.

Let 𝜙 be a 2-CNF formula and 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} be its set of variables
The algorithm runs as follows:

• Pick an arbitrary assignment 𝜎0 : 𝑉 → {true,false}.

• For 𝑡 = 0, 1, 2, . . . , 100𝑛2:

If 𝜎𝑡 satisfies 𝜙 , output 𝜎𝑡 ;

Else, pick an arbitrary unsatisfying clause, say 𝑐 = 𝑥 ∨ 𝑦. Choose from
{𝑥,𝑦} uniformly at random and flip the assignment of the chosen
literal. Let 𝜎𝑡+1 be the flipped assignment.

• Output “𝜙 is not satisfiable”.

Claim 3 This algorithm outputs the correct answer with probability at least
1 − 1

100 .

Proof. It is clear that if a 2-SAT instance has no solution then our algo-
rithm will always give the correct answer. So we consider the probability
that our algorithm outputs no solution conditioned on that the instance
indeed has a satisfying assignment.

Our algorithm produces 100𝑛2 + 1 assignments 𝜎0, 𝜎1, . . . , 𝜎100𝑛2 . We claim
that with probability at least 1 − 1

100 , some of 𝜎𝑘 for 𝑘 ∈
{
0, . . . , 100𝑛2 + 1

}
is a satisfying assignment. The argument here, at first glance, is a bit weird.
We fix an arbitrary 𝜎 : 𝑉 → {true, false} satisfying assignment. We in
fact prove the following: For large enough 𝑘 , conditioned on the event that
none of 𝜎0, 𝜎1, . . . , 𝜎𝑘 is a satisfying assignment, 𝜎𝑘+1 = 𝜎 holds with high
probability.

Let {𝑋𝑡 }100𝑛
2

𝑡=0 be a random variable sequence that

𝑋𝑡 ≜ |{𝑣 ∈ 𝑉 : 𝜎𝑡 (𝑣) = 𝜎 (𝑣)}|.
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Note that {𝑋𝑡 }100𝑛
2

𝑡=0 is not a Markov chain
since it only contains partial informa-
tion of 𝜎𝑡 and we cannot determine the
distribution of 𝑋𝑡+1 given 𝑋𝑡 .

First we verify that Pr [𝑋𝑡+1 = 𝑋𝑡 + 1 | 𝜎𝑡 ] ≥ 1
2
1 and Pr [𝑋𝑡+1 = 𝑋𝑡 − 1 | 𝜎𝑡 ] ≤

1 Let 𝑌 be a random variable. Then function
Pr [ · | 𝑌 ] : Ran(𝑌 ) → ℝ is defined
by Pr [ · | 𝑌 ] = E [𝟙[ · ] | 𝑌 ]. Note that
Pr [ · | 𝑌 ] is a random variable. Here we
slightly abuse the notations and denote the
event “∀𝑎 ∈ Ran(𝑌 ), Pr [ · | 𝑌 = 𝑎] ≥ 1

2 ” as
Pr [ · | 𝑌 ] ≥ 1

2 .

1
2 . WLOG assume we chose the clause 𝑐 = 𝑥 ∨ 𝑦 in round 𝑡 . Since 𝑐 is not
satisfied by 𝜎𝑡 , we have 𝜎𝑡 (𝑥) = 𝜎𝑡 (𝑦) = false. Similarly, 𝑥 ∨ 𝑦 is satisfying
under 𝜎 , so there are three possible assignments of 𝜎 (𝑥) and 𝜎 (𝑦):

• If 𝜎 (𝑥) = true and 𝜎 (𝑦) = false, Pr [𝑋𝑡+1 = 𝑋𝑡 + 1 | 𝜎𝑡 ] = Pr [flip 𝑥] = 1
2

and Pr [𝑋𝑡+1 = 𝑋𝑡 − 1 | 𝜎𝑡 ] = Pr [flip 𝑦] = 1
2 .

• If 𝜎 (𝑥) = false and 𝜎 (𝑦) = true, we have Pr [𝑋𝑡+1 = 𝑋𝑡 + 1 | 𝜎𝑡 ] =

Pr [𝑋𝑡+1 = 𝑋𝑡 − 1 | 𝜎𝑡 ] = 1
2 similarly.

• If 𝜎 (𝑥) = true and 𝜎 (𝑦) = true, Pr [𝑋𝑡+1 = 𝑋𝑡 + 1 | 𝜎𝑡 ] = Pr [flip 𝑥 or 𝑦] =
1.

Thus we have Pr [𝑋𝑡+1 = 𝑋𝑡 + 1 | 𝜎𝑡 ] ≥ 1
2 on condition that none of

𝜎0, 𝜎1, . . . , 𝜎𝑡 is a satisfying assignment.
Consider the 1-D random walk {𝑌𝑡 }𝑡≥0 on [𝑛] ∪ {0} that 𝑌0 = 𝑋0 and for

𝑌𝑡 ∉ {0, 1}

𝑌𝑡+1 =
𝑌𝑡 + 1, w.p. 1

2

𝑌𝑡 − 1, w.p. 1
2

.

If 𝑌𝑡 = 0, 𝑌𝑡+1 = 𝑌𝑡 + 1 w.p. 1 and if 𝑌𝑡 = 𝑛, then 𝑌𝑡+1 = 𝑌𝑡 − 1 w.p. 1.

0 1 2 · · · 𝑛-1 𝑛

1
2

1
2 1

1 1
2

1
2

Then we have2 2 The second inequality can be veri-
fied by constructing a coupling which
satisfies 𝑌𝑡 ≥ 𝑋𝑡 for all 𝑡 ≥ 0. The
existence of such coupling is guaran-
teed by Pr [𝑋𝑡+1 = 𝑋𝑡 + 1 | 𝜎𝑡 ] ≥
Pr [𝑌𝑡+1 = 𝑌𝑡 + 1]. Specifically, if there
is one false and one true in {𝜎 (𝑥 ), 𝜎 (𝑦) },
then 𝑌𝑡+1 moves the same as 𝑋𝑡+1. If
𝜎 (𝑥 ) = 𝜎 (𝑦) =true, then 𝑌𝑡+1 moves +1 or
−1 uniformly at random.

Pr [the algorithm is correct] ≥ Pr
[
∃𝑡 ∈ [0, 100𝑛2] 𝑠 .𝑡 .𝑋𝑡 = 𝑛

]
≥ Pr

[
∃𝑡 ∈ [0, 100𝑛2] 𝑠 .𝑡 .𝑌𝑡 = 𝑛

]
. (9)

Assume that 𝑌0 = 𝑋0 = 𝑖 . Let 𝑇𝑖→𝑛 be the first hitting time of 𝑛 from 𝑖 . Then

𝑇𝑖→𝑛 =
𝑛−1∑
𝑘=𝑖

𝑇𝑘→𝑘+1 .

For 𝑖 > 0, we have Recall A = [the first step is to the right].

𝑇𝑖→𝑖+1 = 𝟙[A] + 𝟙[Ā] (1 +𝑇𝑖−1→𝑖+1)
= 𝟙[A] + 𝟙[Ā] (1 +𝑇𝑖−1→𝑖 +𝑇𝑖→𝑖+1)

Taking the expectation of both sides, we have E [𝑇𝑖→𝑖+1] = 2 + E [𝑇𝑖−1→𝑖 ].
Note that 𝑇0→1 = 1, then

E [𝑇𝑖→𝑛] =
𝑛−1∑
𝑘=𝑖

E [𝑇𝑘→𝑘+1] =
𝑛−1∑
𝑘=𝑖

2𝑘 + 1 = 𝑛2 − 𝑖2 ≤ 𝑛2.
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Then we apply the Markov’s inequality to give a lower bound for Pr
[
∃𝑡 ∈ [0, 100𝑛2] 𝑠 .𝑡 .𝑌𝑡 = 𝑛

]
:

1 − Pr
[
∃𝑡 ∈ [0, 100𝑛2] 𝑠 .𝑡 .𝑌𝑡 = 𝑛

]
= Pr

[
𝑇𝑌0→𝑛 > 100𝑛2

]
≤

E
[
𝑇𝑌0→𝑛

]
100𝑛2

≤ 1
100

.

By Equation (9), we know that Pr [the algorithm is correct] is lower bounded
by 1 − 1

100 . □

3 Fundamental Theorem

In this section, we develop the fundamental theorem of Markov chains for
chains with possibly infinite states. First we introduce some abbreviations
to simplify the expression:

• Aperiodicity:[A],

• Irreducibility:[I],

• Recurrence:[R],

• Positive Recurrence: [PR],

• Has a stationary distribution:[S],

• Has a unique stationary distribution:[U],

• Convergence:[C],

• Finiteness:[F].

The finite FTMC can be written as: [F]+[A]+[I]⇒[S]+[U]+[C]. For infinite
Markov chains, the theorem need to be modified as: [PR]+[A]+[I]⇒[S]+[U]+[C].

Before the proof of the theorem, we need to prepare some mathematical
tools.

3.1 Laws of Large Numbers

𝑋1, 𝑋2, . . . is an infinite sequence of independent and identically distributed
Lebesgue integrable random variables with expected value E [𝑋1] =

E [𝑋2] = · · · = 𝜇 < ∞. Let 𝑋𝑛 = 1
𝑛

∑𝑛
𝑖=1𝑋𝑖 be the sample average. Then

we have the following two laws of large numbers.

Theorem 4 (Weak law of large numbers or Khinchin’s law) The sample
average converge in probability towards the expected value:

𝑋𝑛
𝑝

−→ 𝜇 when 𝑛 → ∞.

That is, for any positive value 𝜀,

lim
𝑛→∞

Pr
[��𝑋𝑛 − 𝜇

�� < 𝜖
]
= 1.
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Theorem 5 (Strong law of large numbers or Kolmogorov’s law) The
sample average converges almost surely or with probability 1 to the expected
value:

𝑋𝑛
a.s.−→ 𝜇 when 𝑛 → ∞.

That is, Let (Ω, F, 𝑃 ) be the probability space. Here
𝑋𝑛 → 𝜇 means ∃𝑀 ∈ F satisifying

• P(M)=1;

• ∀𝜔 ∈ 𝑀 , 𝑋𝑛 (𝜔 ) 𝑛→∞−→ 𝜇.

Pr
[
lim
𝑛→∞

𝑋𝑛 → 𝜇
]
= 1.

As the name of the laws shows, convergence in probability is weaker
than convergence with probability 1. Consider a sequence of independent
random variables 𝑋1, 𝑋2, . . . that 𝑋𝑛 is 1 with probability 1

𝑛 and 𝑋𝑛 is 0 with
probability 1 − 1

𝑛 . Then the sequence converges to 0 in probability but not
with probability 1 since we cannot find an𝑀 ∈ F with measure 1 such that
𝑋𝑛 (𝜔)

𝑛→∞−→ 0 for every 𝜔 ∈ 𝑀 .

Theorem 6 (Strong law of large numbers for Markov chains) If there is a
finite path from state 𝑖 to 𝑗 , then

P𝑖

[
lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝟙[𝑋𝑡 = 𝑗] = 1
E𝑗 [𝑇𝑗 ]

]
= 1.

Proof. If 𝑗 is transient, then the random process will visit 𝑗 for finite
times with probability 1. Thus P𝑖

[
lim𝑛→∞

1
𝑛

∑𝑛
𝑡=1 𝟙[𝑋𝑡 = 𝑗] = 1

E𝑗 [𝑇𝑗 ]

]
=

P𝑖
[
lim𝑛→∞

1
𝑛

∑𝑛
𝑡=1 𝟙[𝑋𝑡 = 𝑗] = 0

]
= 1.

If 𝑗 is recurrent, we first prove the theorem for 𝑖 = 𝑗 . We call a loop from
𝑗 to 𝑗 a cycle (we visit 𝑗 only at the beginning and end of the loop). Denote
𝐶𝑟 as the length of the 𝑟 𝑡ℎ cycle during the process. Let 𝑆𝑘 =

∑𝑘
𝑟=1𝐶𝑟 . Let 𝑘𝑛

be the number of cycles before the 𝑛 + 1 step, that is, 𝑘𝑛 = max {𝑘 |𝑆𝑘 ≤ 𝑛}.
Then we have 𝑆𝑘𝑛 ≤ 𝑛 < 𝑆𝑘𝑛+1 and consequently 𝑆𝑘𝑛

𝑘𝑛
≤ 𝑛

𝑘𝑛
<

𝑆𝑘𝑛+1
𝑘𝑛

. Note
that with probability 1, 𝑘𝑛 → ∞ when 𝑛 → ∞. We have with probability 1
that

lim
𝑘→∞

𝑆𝑘
𝑘

≤ lim
𝑛→∞

𝑛

𝑘𝑛
< lim

𝑘→∞

𝑆𝑘+1
𝑘

.

Note that 𝑆𝑘 =
∑𝑘

𝑟=1𝐶𝑟 where each 𝐶𝑟 is an i.i.d random variable with
mean E𝑗

[
𝑇𝑗
]
. So by SLLN (Theorem 5), we have lim𝑘→∞

𝑆𝑘
𝑘 = E𝑗

[
𝑇𝑗
]
and

lim𝑘→∞
𝑆𝑘+1
𝑘 = lim𝑘→∞

𝑆𝑘+1
𝑘+1 · 𝑘+1𝑘 = E𝑗

[
𝑇𝑗
]
. As a result, with probability 1,

E𝑗

[
𝑇𝑗
]
= lim

𝑛→∞
𝑛

𝑘𝑛
= lim

𝑛→∞
𝑛∑𝑛

𝑡=1 𝟙[𝑋𝑡 = 𝑗] .

If 𝑗 is recurrent and 𝑖 ≠ 𝑗 , let 𝑇𝑖→𝑗 be the first time visiting 𝑗 . Then we
have 𝑆𝑘𝑛+𝑇𝑖→𝑗

𝑘𝑛
≤ 𝑛

𝑘𝑛
<

𝑆𝑘𝑛+1+𝑇𝑖→𝑗

𝑘𝑛
. Since P𝑖 [𝑇𝑗 < ∞] = 1, P𝑖 [lim𝑘→∞

𝑇𝑖→𝑗

𝑘 =

0] = 1. The remaining proof is the same with the situation that 𝑖 = 𝑗 . □

Corollary 7 Let 𝑃 be the transition function of an irreducible Markov chain
where 𝑃𝑡 (𝑖, 𝑗) = Pr [𝑋𝑡 = 𝑗 |𝑋0 = 𝑖]. Then for any states 𝑖, 𝑗 ,

lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑗) = 1
E𝑗 [𝑇𝑗 ]

.
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Proof. By the strong law of large numbers for Markov chains, there exists
a set𝑀 ∈ F such that 𝑃 (𝑀) = 1 and lim𝑛→∞

1
𝑛

∑𝑛
𝑡=1 𝟙[𝑋𝑡 (𝜔) = 𝑗] = 1

E𝑗 [𝑇𝑗 ]
for any 𝜔 ∈ 𝑀 . Then,

lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑗) = lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

E𝑖 [𝟙[𝑋𝑡 = 𝑗]]

= lim
𝑛→∞

E𝑖

[
1
𝑛

𝑛∑
𝑡=1

𝟙[𝑋𝑡 = 𝑗]
]

= E𝑖

[
lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝟙[𝑋𝑡 = 𝑗]
]

=
1

E𝑗 [𝑇𝑗 ]
,

where the third equation follows from the bounded convergence theorem. Bounded Convergence Theorem: If 𝑋𝑛
𝑎.𝑠.−→

𝑋 and E [𝑋 ] < ∞, then E [𝑋𝑛 ] → E [𝑋 ].□

3.2 Proof of the Fundamental Theorem

We will first prove the existence and uniqueness of the stationary distribu-
tion in this lecture.(i.e. [S] and [U])

Theorem 8 [I]+[PR]⇒[S]+[U].

Proof. [Proof of [U]] Let S be the set of states. Assume 𝜋 is a stationary
distribution of the Markov chain, i.e.,

∀𝑗 ∈ S, ∀𝑡 ≥ 0,
∑
𝑖∈S

𝜋 (𝑖)𝑃𝑡 (𝑖, 𝑗) = 𝜋 ( 𝑗).

This yields that for 𝑛 ≥ 1,

1
𝑛

∑
𝑖∈S

𝜋 (𝑖)
𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑗) = 𝜋 ( 𝑗).

Taking 𝑛 → ∞ and applying the dominated convergence theorem, we have Dominated Convergence Theorem: If∫
𝑆
| 𝑓𝑛 | < ∞, then lim𝑛→∞

∫
𝑆
𝑓𝑛 =∫

𝑆
lim𝑛→∞ 𝑓𝑛 .𝜋 ( 𝑗) =

∑
𝑖∈S

𝜋 (𝑖) lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑗) =
∑
𝑖∈S

𝜋 (𝑖) · 1
E𝑗 [𝑇𝑗 ]

=
1

E𝑗 [𝑇𝑗 ]
.

□
Proof. [Proof of [S]] Then we prove the above 𝜋 is a stationary distribu-
tion.

S is finite. We first assume S is finite, so that we can safely exchange the
order of taking limitation and summation in the calculations below.∑

𝑗∈S
𝜋 ( 𝑗) =

∑
𝑗∈S

1
E𝑗 [𝑇𝑗 ]

=
∑
𝑗∈S

lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑗)

= lim
𝑛→∞

∑
𝑗∈S

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑗) = lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

∑
𝑗∈S

𝑃𝑡 (𝑖, 𝑗) = 1.

https://en.wikipedia.org/wiki/Dominated_convergence_theorem#Bounded_convergence_theorem
https://en.wikipedia.org/wiki/Dominated_convergence_theorem
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This indicates that 𝜋 is a legal distribution. We then verify that 𝜋 is indeed
the stationary distribution.

Note that 𝑃𝑡+1 (𝑖, 𝑗) = ∑
𝑘∈S 𝑃𝑡 (𝑖, 𝑘)𝑃 (𝑘, 𝑗). Then

1
E𝑗 [𝑇𝑗 ]

= lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑗) = lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡+1 (𝑖, 𝑗)

= lim
𝑛→∞

∑
𝑘∈S

𝑃 (𝑘, 𝑗) 1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑘) =
∑
𝑘∈S

𝑃 (𝑘, 𝑗) lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑘)

=
∑
𝑘∈S

𝑃 (𝑘, 𝑗) · 1
E𝑘 [𝑇𝑘 ]

.

That is,
𝜋 ( 𝑗) =

∑
𝑘∈S

𝑃 (𝑘, 𝑗)𝜋 (𝑘).

It is worth noting that [PR] is equivalent to [I] when S is finite.

S is infinite. When S is (countably) infinite, we consider every finite
subset 𝐴 of S. Then∑

𝑗∈𝐴
𝜋 ( 𝑗) =

∑
𝑗∈𝐴

1
E𝑗 [𝑇𝑗 ]

=
∑
𝑗∈𝐴

lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑗)

= lim
𝑛→∞

∑
𝑗∈𝐴

1
𝑛

𝑛∑
𝑡=1

𝑃𝑡 (𝑖, 𝑗) = lim
𝑛→∞

1
𝑛

𝑛∑
𝑡=1

∑
𝑗∈𝐴

𝑃𝑡 (𝑖, 𝑗) < 1.

Therefore ∑
𝑗∈S

𝜋 ( 𝑗) = sup
finite𝐴⊆S

∑
𝑗∈𝐴

𝜋 ( 𝑗) =: 𝐶 ≤ 1.

Since [𝑃𝑅], we know that 𝐶 ≠ 0. In the following, we will prove that 𝜋/𝐶
is a stationary distribution. Then 𝐶 = 1 follows from the uniqueness of the
stationary distribution we just proved.

For every finite 𝐴 ⊆ S, we have∑
𝑘∈𝐴

𝑃 (𝑘, 𝑗) · 1
E𝑘 [𝑇𝑘 ]

≤ 1
E𝑗

[
𝑇𝑗
] .

Therefore,∑
𝑘∈S

𝑃 (𝑘, 𝑗) · 1
E𝑘 [𝑇𝑘 ]

= sup
finite𝐴⊆S

∑
𝑘∈𝐴

𝑃 (𝑘, 𝑗) · 1
E𝑘 [𝑇𝑘 ]

≤ 1
E𝑗

[
𝑇𝑗
] .

We show that indeed the equality holds. Assume for a contradiction that∑
𝑘∈S

𝑃 (𝑘, 𝑗) · 1
E𝑘 [𝑇𝑘 ]

<
1

E𝑗

[
𝑇𝑗
] .

Summing the both sides over all 𝑗 ∈ S, we obtain∑
𝑘∈S

1
E𝑘 [𝑇𝑘 ]

<
∑
𝑗∈S

1
E𝑗

[
𝑇𝑗
] ,
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which is a contradiction. As a result, we know∑
𝑘∈S

𝑃 (𝑘, 𝑗) · 1
E𝑘 [𝑇𝑘 ]

=
1

E𝑗

[
𝑇𝑗
] ,

and 𝜋 ( 𝑗) = 1
𝐶 ·E𝑗 [𝑇𝑗 ] is a stationary distribution. By the uniqueness of the

distribution, we have 𝐶 = 1.
□
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