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1 Reversible Markov Chains

A Markov chain 𝑃 over state space [𝑛] is (time) reversible if there exists
some distribution 𝜋 satisfying

∀𝑖, 𝑗 ∈ [𝑛], 𝜋 (𝑖)𝑃 (𝑖, 𝑗) = 𝜋 ( 𝑗)𝑃 ( 𝑗, 𝑖).

This family of identities is called detailed balance conditions. Moreover, the
distribution 𝜋 must be a stationary distribution of 𝑃 . To see this, note that

𝜋T𝑃 ( 𝑗) =
∑
𝑖∈[𝑛]

𝜋 (𝑖)𝑃 (𝑖, 𝑗) =
∑
𝑖∈[𝑛]

𝜋 ( 𝑗)𝑃 ( 𝑗, 𝑖) = 𝜋 ( 𝑗).

The name reversible comes from the fact that for any sequence of vari-
ables 𝑋0, 𝑋1, . . . , 𝑋𝑡 following the chain which start from the stationary
distribution, the distribution of (𝑋0, 𝑋1, . . . , 𝑋𝑡−1, 𝑋𝑡 ) is identical to the
distribution of (𝑋𝑡 , 𝑋𝑡−1, . . . , 𝑋1, 𝑋0), namely for all 𝑥0, 𝑥2, . . . 𝑥𝑡 ∈ [𝑛],

Pr𝑋0∼𝜋 [𝑋0 = 𝑥0, 𝑋1 = 𝑥1, . . . , 𝑋𝑡 = 𝑥𝑡 ]
= 𝜋 (𝑥0)𝑃 (𝑥0, 𝑥1) · · · 𝑃 (𝑥𝑡−1, 𝑥𝑡 )
= 𝜋 (𝑥𝑡 )𝑃 (𝑥𝑡 , 𝑥𝑡−1) · · · 𝑃 (𝑥1, 𝑥0)
= Pr𝑋0∼𝜋 [𝑋0 = 𝑥𝑡 , 𝑋1 = 𝑥𝑡−1, . . . , 𝑋𝑡 = 𝑥0]

We will study reversible chains since their transition matrices are essen-
tially symmetric in some sense, so many powerful tools in linear algebra
apply. We will also see that reversible chains are general enough for most of
our (algorithmic) applications. You can verify that the the random walks on
the hypercube is reversible Markov chains with respect to uniform distribu-
tion.

Recall the two conditions of FTMC: irreducibility and aperiodicity. Since
the transition graph is undirected if we only consider the connectivity,
irreducibility is equivalent to the connectivity of the transition graph. Ape-
riodicity, on the other hand, is equivalent to that the graph is not bipartite.

2 The Metropolis Algorithm

Given a distribution 𝜋 over a state space Ω, how can we design a Markov
chain 𝑃 so that 𝜋 is the stationary distribution of 𝑃? The Metropolis algo-
rithm provides a way to achieve the goal as long as the transition graph 𝐺 is
connected and undirected.

Let Δ be the maximum degree of the transition graph except selfloop
(that is Δ ≜ max𝑢∈[𝑛]

∑
𝑣≠𝑢∈[𝑛] 𝟙[(𝑢, 𝑣) ∈ 𝐸]). We describe the following
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process to construct a transition matrix 𝑃 : Choose 𝑘 ∈ [Δ + 1] uniformly
at random. For any 𝑖 ∈ [𝑛], let { 𝑗1, 𝑗2, . . . , 𝑗𝑑 } be the 𝑑 neighbours of 𝑖 . We
consider the transition at state 𝑖:

• If 𝑑 + 1 ≤ 𝑘 ≤ Δ + 1, do nothing.

• If 𝑘 ≤ 𝑑 ,

– propose to move from 𝑖 to 𝑗𝑘 .

– accept the proposal with probability min
{
𝜋 ( 𝑗𝑘 )
𝜋 (𝑖 ) , 1

}
.

Then the transition matrix is, for 𝑖, 𝑗 ∈ [𝑛],

𝑃 (𝑖, 𝑗) =


1
Δ+1 min

{
𝜋 ( 𝑗 )
𝜋 (𝑖 ) , 1

}
, if 𝑖 ≠ 𝑗 ;

1 −∑𝑘≠𝑖 𝑃 (𝑖, 𝑘), if 𝑖 = 𝑗 .

We can verify that 𝑃 is reversible with respect to 𝜋 :

∀𝑖, 𝑗 ∈ Ω :

𝜋 (𝑖)𝑃 (𝑖, 𝑗) = 𝜋 (𝑖) · 1
Δ + 1 min

{
𝜋 ( 𝑗)
𝜋 (𝑖) , 1

}
=
min {𝜋 (𝑖), 𝜋 ( 𝑗)}

Δ + 1 = 𝜋 ( 𝑗)𝑃 ( 𝑗, 𝑖).

The advantage of the Metropolis algorithm
is that we do not need to know 𝜋 in order
to implement the algorithm. We only need
to know the quantity 𝜋 ( 𝑗 )

𝜋 (𝑖 ) , which is much
easier to compute in many applications.

Example 1 We give a toy example to show how the algorithm works. Consider
a graph with 3 vertices {𝑎, 𝑏, 𝑐}. There are undirected edges between (𝑎, 𝑏),
(𝑏, 𝑐) and (𝑎, 𝑐) and selfloops for each vertex. In this situation, Δ = 2. If we
want to design a transition matrix 𝑃 with stationary distribution ( 12 ,

1
3 ,

1
6 ), by

Metropolis algorithm we have

𝑃 (𝑎, 𝑏) = 1
2 + 1 ·

2
3
=
2
9
,

𝑃 (𝑎, 𝑐) = 1
2 + 1 ·

1
3
=
1
9
,

𝑃 (𝑎, 𝑎) = 1 − 1
9
− 2
9
=
2
3
.

3 Sample Proper Coloring

Let’s consider the problem of sampling proper colorings. Given a graph 𝐺 =

(𝑉 , 𝐸), we want to color the vertices using 𝑞 colors under the condition that
no two adjacent vertices share the same color. More formally, a coloring of
𝐺 is a mapping 𝑐 : 𝑉 ↦→ [𝑞], and we call it proper iff ∀ {𝑢, 𝑣} ∈ 𝐸, 𝑐 (𝑢) ≠
𝑐 (𝑣). The proper coloring problem is NP-hard in general. However, for
𝑞 > Δ there always exists a proper coloring that can be easily obtained by a
greedy algorithm, where Δ is the maximum degree of the graph.

If we want to count the number of proper colorings, then the problem
becomes harder. It is known that for every 𝑞 ≥ Δ, the problem is #P-hard.
On the other hand, we can use a uniform sampler to obtain an algorithm to
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approximately counting the number of proper coloring, at an arbitrarily low
cost in the precision.

In fact, it is known that an approximate counting algorithm is equivalent
to an uniform sampler in many cases (for example, sampling proper color-
ing). We only show one direction here: a sampler implies an algorithm for
approximate counting. Given a graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = [𝑛], let C be
the set of proper colorings and 𝑍 = |C|. Suppose we have an oracle that can
uniformly generate a proper coloring from 𝐶 . Fix a proper coloring 𝜎 . We
have

1
𝑍

=Pr𝑥∼𝐶 [𝑥 = 𝜎]

=Pr𝑥∼𝐶 [𝑥 (1) = 𝜎 (1) ∧ 𝑥 (2) = 𝜎 (2) ∧ . . . ]

=
𝑛∏
𝑖=1

Pr

[
𝑥 (𝑖) = 𝜎 (𝑖)

����� ⋂
𝑗<𝑖

𝑥 ( 𝑗) = 𝜎 ( 𝑗)
]
.

The above probability can be estimated by taking a number of samples from
the oracle, and computing the ratio between colorings such that 𝑥 ( 𝑗) = 𝜎 ( 𝑗)
for 𝑗 ≤ 𝑖 and ones that 𝑥 ( 𝑗) = 𝜎 ( 𝑗) for 𝑗 < 𝑖 . Moreover, the ratio we
just estimated is bounded below by an inverse polynomial and therefore
polynomial number of sample suffices to estimate ratio accurately. The
strategy works even if the sampler is an approximate one. Hence one can
approximately compute 𝑍 . See [JVV86] for more details.

Now we use MCMC to do sampling. Consider the following Markov
chain to sample proper colorings:

• Pick 𝑣 ∈ 𝑉 and 𝑐 ∈ [𝑞] uniformly at random.

• Recolor 𝑣 with 𝑐 if possible.
It is indeed a Metropolis algorithm. Let

𝜎𝑣←𝑐 (𝑢 ) =
{

𝜎 (𝑢 ) 𝑢 ≠ 𝑣
𝑐 𝑢 = 𝑣.

𝜎𝑣←𝑐 is a neighbor of 𝜎 on the transition
graph, and we accept it if 𝜎𝑣←𝑐 is a proper
coloring, i.e. 𝜋 (𝜎𝑣←𝑐 )

𝜋 (𝜎 ) = 1.

The chain is aperiodic since self-loops exist in the walk. For 𝑞 ≥ Δ + 2, the
chain is irreducible. The bound 𝑞 ≥ Δ + 2 is tight for irreducibility since
when 𝑞 = Δ + 1, each proper coloring of complete graph is frozen. It is still
an open problem if the mixing time of the chain is polynomial in the size of
the graph under the condition 𝑞 ≥ Δ + 2. The best bound so far requires that
𝑞 ≥ ( 116 −𝜀)Δ for a certain constant 𝜀 > 0. Here, we shall give a rapid mixing
proof when 𝑞 > 4Δ using the method of coupling.

The coupling we used is simple: Both players pick same 𝑣 and 𝑐 to move.
However, we are not able to reduce the analyze the coupling to coupon
collector as we did before. We introduce a more general method to analyze
couplings. We define a certain distance 𝑑 (𝑥,𝑦) for any two configurations
𝑥,𝑦 ∈ Ω. We can assume without loss of generality that if 𝑥 ≠ 𝑦 then
𝑑 (𝑥,𝑦) ≥ 1 since Ω is finite. Consider a coupling 𝜔𝑡 of 𝜇𝑡 , 𝜈𝑣 . Then for every
𝑡 ≥ 0 and (𝑋𝑡 , 𝑌𝑡 ) ∼ 𝜔𝑡 , we try to establish

E [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) | (𝑋𝑡 , 𝑌𝑡 )] ≤ (1 − 𝛼)𝑑 (𝑋𝑡 , 𝑌𝑡 )
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for some 𝛼 ∈ (0, 1]. In other words, {𝑑 (𝑋𝑡 , 𝑌𝑡 )}𝑡≥0 is a supermartingale. This
implies that for every 𝑡 ≥ 1,

E [𝑑 (𝑋𝑡 , 𝑌𝑡 )] ≤ (1 − 𝛼)E [𝑑 (𝑋𝑡−1, 𝑌𝑡−1)] ≤ (1 − 𝛼)𝑡𝑑 (𝑋0, 𝑌0).

If we have a universal upper bound for 𝑑 (𝑋0, 𝑌0), say 𝑛, then by coupling
lemma

𝐷TV (𝜇𝑡 , 𝜈𝑡 ) ≤ Pr(𝑋𝑡 ,𝑌𝑡 )∼𝜔𝑡 [𝑋𝑡 ≠ 𝑌𝑡 ]
= Pr [𝑑 (𝑋𝑡 , 𝑌𝑡 ) ≥ 1]
≤ E [𝑑 (𝑋𝑡 , 𝑌𝑡 )]
≤ (1 − 𝛼)𝑡 · 𝑛.

Now come back to our problem of sampling proper colorings. Suppose
𝑋𝑡 , 𝑌𝑡 are two proper colorings. We define the distance 𝑑 (𝑋𝑡 , 𝑌𝑡 ) as their
Hamming distance, i.e. the number of vertices colored differently in two
colorings. Our coupling of two chains is that we always choose the same
𝑣, 𝑐 in each step. The distance between two colorings can change at most 1
since only 𝑣 is affected. The possible changes can be divided into two kinds:

• Good move: 𝑋𝑡 (𝑣) ≠ 𝑌𝑡 (𝑣), and both change into 𝑐 successfully. It will
decrease distance by 1.

• Bad move: 𝑋𝑡 (𝑣) = 𝑌𝑡 (𝑣), one succeeds and one fails in the changing. It
will increase distance by 1.

Consider the probabilities of two types of moves. For good moves, w.p.
𝑑 (𝑋𝑡 ,𝑌𝑡 )

𝑛 , 𝑋𝑡 (𝑣) ≠ 𝑌𝑡 (𝑣), and there are at least 𝑞 − 2Δ choices of 𝑐 to make it a
good move. So

Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) − 1] =Pr(𝑣,𝑐 ) ∈𝑉 ×[𝑞 ] [(𝑣, 𝑐) is a good move]

≥𝑑 (𝑋𝑡 , 𝑌𝑡 )
𝑛

· 𝑞 − 2Δ
𝑞

.

For bad moves, there exists a neighbor𝑤 of 𝑣 such that its color is different
in two colorings, and in one coloring𝑤 is of color 𝑐 . By a counting argu-
ment, we have

Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) + 1] = Pr(𝑣,𝑐 ) ∈𝑉 ×[𝑞 ] [(𝑣, 𝑐) is a bad move] ≤ Δ𝑑 (𝑋𝑡 , 𝑌𝑡 )
𝑛

· 2
𝑞
.

Therefore,

E [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) | (𝑋𝑡 , 𝑌𝑡 )] = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) + Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) + 1] − Pr [𝑑 (𝑋𝑡+1, 𝑌𝑡+1) = 𝑑 (𝑋𝑡 , 𝑌𝑡 ) − 1]

≤ 𝑑 (𝑋𝑡 , 𝑌𝑡 ) +
Δ𝑑 (𝑋𝑡 , 𝑌𝑡 )

𝑛
· 2
𝑞
− 𝑑 (𝑋𝑡 , 𝑌𝑡 )

𝑛
· 𝑞 − 2Δ

𝑞

≤ 𝑑 (𝑋𝑡 , 𝑌𝑡 )
(
1 − 𝑞 − 4Δ

𝑛𝑞

)
.
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In the case 𝑞 > 4Δ, if we want

𝐷TV ≤
(
1 − 1

𝑛𝑞

)𝑡
𝑛 ≤ 𝜀,

we have the mixing time is bounded by

𝜏mix (𝜀) ≤ 𝑛𝑞 log
𝑛

𝜀
.

4 Countably Infinite Markov Chains

We have proved that finite Markov chain must have a stationary distribu-
tion using Perron-Frobenius Theorem. However, when the Markov chain
has infinite states, even it’s countable infinite, there is something going
wrong.

Consider the following random walk on ℕ. The state space is ℕ and at
each state 𝑖 , go to 𝑖 + 1 w.p. 𝑝 and go to 𝑖 − 1 w.p 1 − 𝑝 (if 𝑖 = 0, w.p. 1 − 𝑝
stay put).

0 1 2 3
· · ·1 − 𝑝

1 − 𝑝 1 − 𝑝 1 − 𝑝

𝑝 𝑝 𝑝 𝑝

Let 𝜋 be the stationary distribution of this Markov chain (if there exists a
stationary distribution). We have that

𝜋 (0) = 𝜋 (0)(1 − 𝑝) + 𝜋 (1) (1 − 𝑝) =⇒ 𝜋 (1) = 𝑝

1 − 𝑝 𝜋 (0),

𝜋 (1) = 𝜋 (0)𝑝 + 𝜋 (2) (1 − 𝑝) =⇒ 𝜋 (2) = 𝑝

1 − 𝑝 𝜋 (1),

· · ·

𝜋 (𝑖) = 𝜋 (𝑖 − 1)𝑝 + 𝜋 (𝑖 + 1)(1 − 𝑝) =⇒ 𝜋 (𝑖 + 1) = 𝑝

1 − 𝑝 𝜋 (𝑖).

· · ·

Note that 𝜋 is a distribution, so
∑∞

𝑖=0 𝜋 (𝑖) = 1. Then, we have

• If 𝑝 < 1
2 , that is,

𝑝
1−𝑝 < 1, then

∑∞
𝑖=0

(
𝑝

1−𝑝

)𝑖
𝜋 (0) = 1. By direct calculation

we have 𝜋 (0) = 1−2𝑝
1−𝑝 and 𝜋 (𝑖) =

(
𝑝

1−𝑝

)𝑖 1−2𝑝
1−𝑝 for 𝑖 ∈ ℕ.

• If 𝑝 > 1
2 , then

𝑝
1−𝑝 > 1. When 𝑖 → ∞, if 𝜋 (0) ≠ 0, 𝜋 (𝑖) → ∞. This yields

that 𝜋 (0) = 𝜋 (1) = · · · = 𝜋 (𝑖) = · · · = 0. The Markov chain doesn’t have a
stationary distribution in this case.

• If 𝑝 = 1
2 ,

𝑝
1−𝑝 = 1. Then 𝜋 (0) = 𝜋 (1) = · · · = 𝜋 (𝑖) = · · · and ∑∞

𝑖=0 𝜋 (0) = 1.
This yields that 𝜋 (0) = 0 and there is no stationary distribution in this
case.
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4.1 Recurrence
𝑇𝑖 ≜ min {𝑡 > 0 |𝑋𝑡 = 𝑖 }.

Definition 1 For 𝑖 ∈ Ω, let 𝑇𝑖 > 0 be the first hitting time of state 𝑖 . Let
P𝑖 = Pr [·|𝑋0 = 𝑖]. We say a state 𝑖 is recurrent if P𝑖 [𝑇𝑖 < ∞] = 1, o.w. we say
the state is transient.

Recall the probability space of a stochastic
process. One can view the outcomes of
the probability space is the set of infinite
sequence of real numbers between [0, 1],
namely Ω̂ = [0, 1]ℕ. The sigma-algebra can
be defined in a way similar to the problem
1 in our first homework. Therefore, the
random variable𝑇𝑖 is therefore a function
Ω̂ → ℝ.

Let 𝑁𝑖 ≜
∑∞

𝑡=0 𝟙[𝑋𝑡 = 𝑖], then we have the following propositions.

Proposition 2 If 𝑖 is recurrent, then P𝑖 [𝑁𝑖 = ∞] = 1.

Proof. Assume that P𝑖 [𝑁𝑖 = ∞] < 1. Then there exists Ω′ ⊆ Ω̂ such that
𝑁𝑖 < ∞ on Ω′ and P𝑖 [Ω′] > 0. This means that with probability larger
than 0, we will never reach state 𝑖 after the last time we visit it. This is in
contradiction with the fact that 𝑖 is recurrent. □

Proposition 3 If 𝑖 is recurrent and there exists a finite path from 𝑖 to 𝑗 , then

• P𝑖 [𝑇𝑗 < ∞] = 1.

• P𝑗 [𝑇𝑖 < ∞] = 1.

• 𝑗 is recurrent.

Proof.

• Let 𝑞 ≜ P𝑖 [reach 𝑗 before returning to 𝑖]. Since there is a finite path from
𝑖 to 𝑗 , we have 𝑞 > 0 and P𝑖 [visit 𝑖 𝑛 times before reaching 𝑗] = (1 − 𝑞)𝑛 .
Assume that P𝑖 [𝑇𝑗 = ∞] = 𝛼 > 0. Then we have P𝑖 [𝑇𝑗 = ∞|𝑁𝑖 = ∞] = 𝛼 P𝑖 [𝑇𝑗 = ∞] = P𝑖 [𝑇𝑗 = ∞ | 𝑁𝑖 =

∞] · P𝑖 [𝑁𝑖 = ∞] + P𝑖 [𝑇𝑗 = ∞ | 𝑁𝑖 <

∞] · P𝑖 [𝑁𝑖 < ∞] = P𝑖 [𝑇𝑗 = ∞ | 𝑁𝑖 = ∞].
since P𝑖 [𝑁𝑖 = ∞] = 1. Let 𝑇𝑛

𝑖 be the 𝑛𝑡ℎ time that the chain visits state 𝑖 .
Then

∀𝑛 > 0, P𝑖 [𝑇𝑗 > 𝑇𝑛
𝑖 |𝑁𝑖 = ∞] ≥ P𝑖 [𝑇𝑗 = ∞|𝑁𝑖 = ∞] = 𝑢

On the otherhand, we have lim𝑛→∞ P𝑖 [𝑇𝑗 > 𝑇𝑛
𝑖 |𝑁𝑖 = ∞] = lim𝑛→∞ P𝑖 [𝑇𝑗 >

𝑇𝑛
𝑖 ] = lim𝑛→∞ (1 − 𝑞)𝑛 = 0. This is a contradiction. Thus, P𝑖 [𝑇𝑗 = ∞] = 0.

• If P𝑗 [𝑇𝑖 = ∞] = 𝑝 > 0, then we have that P𝑖 [𝑇𝑖 = ∞] ≥ 𝑞 · 𝑝 > 0. This is
in contradiction with the fact that 𝑖 is recurrent.

• If P𝑗 [𝑇𝑗 = ∞] = 𝑟 > 0, then P𝑖 [𝑇𝑗 = ∞] ≥ 𝑞 ·𝑟 > 0. This is in contradiction
with the first item of this proposition.

□
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