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March 15, 2023

1 Fundamental Theorem of Markov Chains

Recall the fundamental theorem of Markov chains for finite chains we
introduced in the last lecture.

Theorem 1 (Fundamental theorem of Markov chains). If a finite
Markov chain P ∈ �n×n is irreducible and aperiodic, then it has a unique
stationary distribution π ∈�n. Moreover, for any distribution µ ∈�n,

lim
t→∞

µTP t = πT.

Today we give a proof of the theorem. To this end, we first study
the properties of the transition matrix P of an irreducible and ape-
riodic chain. Then we introduce the notion of coupling, a powerful
technique to analyze stochastic processes.

Claim 2. Let P ∈ �n×n be an irreducible and aperiodic Markov chain. It
holds that

∃ t∗ : ∀ i, j ∈ [n] : P t∗(i, j) > 0 .

We use Lemma 3 to prove Claim 2.

Lemma 3. Let c1, c2, . . . , cs be a group of positive integers satisfying
gcd(c1, . . . , cs) = 1. For any sufficiently large integer b, there exists
y1, y2, . . . , ys ∈� such that That is, there exists some b0 > 0 such

that for any b > b0, the diophantine
equation c1y1 +c2y2 + · · ·+csys = b always
has non-negative solutions

c1y1 + c2y2 + · · ·csys = b.

Proof. By Bézout’s identity there exists x1,x2, . . . ,xs ∈� such that

c1x1 + c2x2 + · · ·csxs = 1 .

We apply induction on s. The case s = 1 trivially holds. Assume s ≥ 2
and the lemma holds for smaller s. Let g = gcd(c1, . . . , cs−1). By induc-
tion hypothesis, we know that

a1

g
·x1 +

a2

g
·x2 +· · ·+ as−1

g
·xs−1 = b′ ⇐⇒ a1 ·x1 +a2 ·x2 +· · ·+as−1xs−1 = g ·b′

has non-negative solutions for sufficiently large b′ . Therefore, we only
need to prove that the equation

g · b′ + as · xs = b (1)

has nonegative solution (b′ ,xs) with sufficiently large b′ when b is
sufficiently large. In other words, we need to prove for any b0 > 0,
eq. (1) has nonegative solution with b′ > b0 for any sufficiently large b.

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
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Note that gcd(g,as) = 1, we can find integers (y,x) such that

g · y + as · x = 1 ⇐⇒ g · (by) + as · (bx) = b.

Noting that for any k ∈�≥0, we have g · (by + kas) + as · (bx − kg) = b. We
need by + kas > b0 and bx − kg ≥ 0, which are equivalent to

bx
g
≥ k >

b0 − by
as

.

We can always find such an integer k if b ≥ g(b0 + as).

Proof of Claim 2. The property of irreducibility implies that

∀ i, j : ∃ t : P t(i, j) > 0 .

Suppose that there are s loops of length c1, c2, . . . , cs starting from and
ending at state i. Then by aperiodicity we have

gcd(c1, c2, . . . , cs) = 1 .

For any sufficiently large m and any pair of states (i, j), by Lemma 3
and irreducibility, there exists a path from i to j with exactly m steps.
Thus, there exist t∗ > 0 such that for any state pair (i, j), P t∗(i, j) > 0.
Furthermore, for any t > t∗, P t(i, j) > 0 for any i, j ∈Ω.

1.1 Proof of FTMC

Proof. We already know that P has a stationary distribution π. What
we would like to show is that for all starting distribution µ0, it holds
that

lim
t→∞

DTV(µt ,π) = 0 ,

where µTt = µT0P
t .

Suppose that {Xt} and {Yt} are two identical Markov chains starting
from different distribution, where Y0 ∼ π while X0 is generated from
an arbitrary distribution µ0.

Now we have two sequence of random variables:

µ0 µ1 µt
≀ ≀ ≀
X0 → X1 → X2 → ·· · → Xt → Xt+1 → ·· ·

Y0 → Y1 → Y2 → ·· · → Yt → Yt+1 → ·· ·
≀ ≀ ≀
π π π
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The coupling lemma establishes the connection between the distance
of distributions and the discrepancy of random variables. To show
that DTV(µt ,π)→ 0, it is sufficient to construct a coupling ωt of µt and
π and then compute Pr(Xt ,Yt)∼ωt

[Xt , Yt].
Here we give a simple coupling. Let (Xt ,Yt) ∼ ωt and we construct

ωt+1. If Xt = Yt for some t ≥ 0, then let Xt′ = Yt′ for all t′ > t, otherwise
Xt+1 and Yt+1 are independent. Namely, {Xt} and {Yt} are two inde-
pendent Markov chains until Xt and Yt reach the same state for some
t ≥ 0, and once they meet together then they move together forever.
The coupling lemma tells us that DTV(µt ,π) ≤ Pr(Xt ,Yt)∼ωt

[Xt , Yt].
Let t∗ be the same t∗ with Claim 2. Let α be a positive constant

such that P t∗(i, j) ≥ α > 0 for any state pair (i, j). Define event B as
{∃t < t∗,Xt = Yt}. We have that

Pr [Xt∗ = Yt∗ ] = Pr [Xt∗ = Yt∗ ∧B] +Pr
[
Xt∗ = Yt∗ ∧ B̄

]
(2)

Suppose {X ′t} and {Y ′t } are two independent Markov chains with tran-
sition matrix P and X ′0 ∼ µ0 and Y ′0 ∼ π. The only difference between
({X ′t} , {Y ′t }) and ({Xt} , {Yt}) is that {X ′t} and {Y ′t } are independent all the
time. Then

Pr
[
Xt∗ = Yt∗ = 1∧ B̄

]
= Pr

[
X ′t∗ = Y ′t∗ = 1∧ B̄

]
= Pr

[
X ′t∗ = 1

]
·Pr

[
Y ′t∗ = 1

]
−

t∗−1∑
t=0

∑
z∈[n]

Pr
[
X ′t = Y ′t = z∧∀s < t,X ′s , Y

′
s
]
·Pr

[
X ′t∗ = 1

∣∣∣ X ′t = z
]
·Pr

[
Y ′t∗ = 1

∣∣∣ Y ′t = z
]
.

Note that

Pr [Xt∗ = Yt∗ ∧B] ≥ Pr [Xt∗ = Yt∗ = 1∧B]

=
t∗−1∑
t=0

∑
z∈[n]

Pr [Xt = Yt = z∧∀s < t,Xs , Ys] ·Pr [Xt∗ = 1 | Xt = z]

=
t∗−1∑
t=0

∑
z∈[n]

Pr
[
X ′t = Yt = z∧∀s < t,X ′s , Y

′
s
]
·Pr

[
X ′t∗ = 1

∣∣∣ X ′t = z
]
.

Thus, Equation (2)≥ Pr
[
X ′t∗ = 1

]
·Pr

[
Y ′t∗ = 1

]
≥ α2.

By the coupling and the Markov property, we have

Pr [X2t∗ , Y2t∗ ] = Pr [X2t∗ , Y2t∗ |Xt∗ = Yt∗ ]Pr [Xt∗ = Yt∗ ]

+Pr [X2t∗ , Y2t∗ |Xt∗ , Yt∗ ]Pr [Xt∗ , Yt∗ ]

≤ Pr [X2t∗ , Y2t∗ |Xt∗ , Yt∗ ]Pr [Xt∗ , Yt∗ ]

≤ (1−α2)2.

Then we have Pr [Xkt∗ , Ykt∗ ] ≤ (1−α2)k by recursion. It yields that

Pr [Xt , Yt] =
∑

x0,y0∈[n]

µ0(x0) ·π(y0) ·Pr [Xt , Yt |X0 = x0,Y0 = y0]→ 0
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as t→∞.

2 Mixing Time

We are ready to study the convergence rate of Markov chains. We start
with the notion of mixing time. For any ε > 0, the mixing time of a
Markov chain P up to error ε is the minimum step t such that if we
run the Markov chain from any initial distribution, its total variation
distance to the stationary distribution is at most ε. Formally,

τmix(ε) := min
t

max
µ0

DTV(µt ,π) ≤ ε.

Recalling in our proof of FTMC using the coupling argument, we
obtain the following inequality

DTV(µt ,π) ≤ Pr(Xt ,Yt)∼ωt
[Xt , Yt] .

Therefore, if we can construct a coupling ωt such that for two arbi-
trary initial distributions, Pr(Xt ,Yt)∼ωt

[Xt , Yt] ≤ ε, then τmix(ε) ≤ t.

Example 1 (Random walk on hypercube). . Consider the random walk
on the n-cube. The state space Ω = {0,1}n, and there is an edge between
two state x and y iff ∥x − y∥1 = 1. We start from a point X0 ∈ Ω. In each
step,

• With probability 1
2 do nothing.

• Otherwise, pick i ∈ [n] uniformly at random and flip X(i).

It’s equivalent to the following process:

• Pick i ∈ [n],b ∈ {0,1} uniformly at random.

• Change X(i) to b.

Now we analyze the mixing time of the process using coupling. We apply
the following simple coupling rule:

• We couple two walks Xt and Yt by choosing the same i,b in every step.

Once a position i ∈ [n] has been picked, Xt(i) and Yt(i) will be the
same forever. Therefore, the problem again reduces to the coupon collector
problem.

For t ≥ n logn+ cn, the probability that the ith dimension is not chosen
is (

1− 1
n

)n logn+cn
≤ e−c

n
.

Then the probability that there exists at least one dimension which is not
chosen is no larger than e−c. We want this value to be less than ϵ. Then we
choose c > log 1

ϵ . Thus,

τmix(ε) ≤ n log
n
ε
.
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Let’s modify the process a bit by changing 1
2 into 1

n+1 , i.e. w.p. 1
n+1 do

nothing, to make the lazy walk more active. Note that we add the lazy
move in order to make the chain aperiodic.

Now in this case, we describe another coupling of Xt ,Yt . Without loss of
generality, we can reorder the entries of two vectors so that all disagreeing
entries come first. Namely there exists an index k such that Xt(i) , Yt(i) if
1 ≤ i ≤ k, and Xt(i) = Yt(i) for i > k. Our coupling is as follows:

• If k = 0, Y acts the same as X.

• If k = 1, Y acts the same as X except when X flips the first entry, Y does
nothing and vice versa.

• For k > 2, we distinguish between whether X flip indices in [k]:

– If X did nothing or flipped one of i > k: Y acts the same.

– If X flipped 1 ≤ i ≤ k: Y flips (i mod k) + 1, i.e. 1 7→ 2,2 7→
3, · · · , k − 1 7→ k,k 7→ 1.

It’s clear that the above is indeed a coupling. In fact, this coupling acts
like a doubled speed coupon collector, since in the case k > 2 we can always
collect two coupons at a time when lady luck is smiling. It is therefore
conceivable that

τmix ≤
1
2
n logn+O(n).

Example 2 (Shuffling cards). . Given a deck of n cards, consider the
following rule of shuffling

• pick a card uniformly at random;

• put the card on the top.

The shuffling rule can be viewed as a random walk on all n! permuta-
tions of the n cards and it is easy to verify that the uniform distribution is
the stationary distribution. Let us design a coupling for this Markov chain.
That is, let Xt and Yt be decks of cards, and we construct Xt+1 and Yt+1 by

• picking the same random card and put it on the top.
Note that we are picking the “same
card”, not the card at the same location.
That is, we draw a random card from
Xt , say ♥K , and then we pick ♥K in Yt
as well.

This is clearly a coupling, and once some card, say ♥K has been picked,
then ♥K in two decks will be always at the same location. Therefore, if we
ask in how many rounds T , XT = YT , then the question is equivalent to the
coupon collector problem again. So we have,

τmix(ε) ≤ n log
n
ε
.
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