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1 Discrete Markov Chain

1.1 Markov Chain

Definition 1 (Discrete Markov Chain). Suppose there is a sequence of
random variables

X0,X1, . . . ,Xt ,Xt+1, . . .

where the Ran(Xt) ⊆Ω for some countable Ω. Then we call {Xt} a discrete
Markov chain if ∀t ≥ 1 the distribution of Xt is only related to Xt−1, that is
∀a0, a1, . . . , at ∈Ω,

Pr [Xt = at |Xt−1 = at−1, . . . ,X1 = a1,X0 = a0] = Pr [Xt = at |Xt−1 = at−1] .

Example 1 (Random Walk on �). . Consider the random walk on �.
One starts at 0 and in each round, he tosses a fair coin to determine the
direction of moving: with probability 50% to the left and 50% to the right.
If we use Xt to denote his position at time t, then we have X0 = 0 and for
every t > 0, Xt = Xt−1 + 1 with probability 50% and Xt = Xt−1 − 1 with
probability 50%. This is a simple Markov chain, since the position at time
t only depends on the position at time t − 1.

In this lecture, we consider the situation that the state space Ω = [n]
is finite. Then a (time-homogeneous) Markov chain can be character-
ized by a n×n matrix P =

(
pij

)
i,j∈[n]

where pij = Pr [Xt+1 = j | Xt = i] for

all t ≥ 0.
In general, a Markov chain can be equivalently viewed as a random

walk on a weighted directed graph where the edge weight from i to j

means the probability of moving to vertex j when one is standing at
vertex i.

Example 2 (Finite State Random Walk). The following three vertex
directed graph corresponds to the Markov chain with transition matrix

P = (pij ) =


1/2 3/8 1/8
1/3 0 2/3
1/4 3/4 0

. We sometimes call the graph the transition

graph of P .

At any time t ≥ 0, we use µt to denote the distribution of Xt mean-
ing

µt(i) ≜ Pr [Xt = i] .

By the law of total probability, µt+1(j) =
∑

i µt(i) · pij , we have µTt P =
µTt+1. As a result, we have µTt = µT0P

t . This is a useful formula as we can
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compute the distribution at any time given the initial distribution and
the transition matrix.

Sometimes, we will simply denote the transition matrix P as the
Markov chain for convenience.

1.2 Stationary Distribution

Definition 2 (Stationary Distribution). . A distribution π is a stationary
distribution of P if it remains unchanged in the Markov chain as time
progresses, i.e.,

πTP = πT.

One of the major algorithmic applications of Markov chains is the
Markov chain Monte Carlo (MCMC) method. It is a general method for
designing an algorithm to sample from a certain distribution π. The
idea of MCMC is

• First design a Markov Chain of which the stationary distribution is
the desired π;

• Simulate the chain from a certain initial distribution for a number
of steps and output the state.

Therefore, we hope that the distribution µt is close to π when t is large
enough.

Example 3 (Card Shuffling). Consider a naive “top-to-random" card
shuffle: Suppose we have n cards, every time we take the top card of the
deck and insert it into the deck at one of the n distinct possible places
uniformly at random. Thus, there are n! possible permutations and pij > 0
only if the ith permutation can come to the jth through one step “top-to-
random" shuffle.
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Performing the shuffle repeatedly is a Markov chain. It is not difficult

to verify that the uniform distribution
(

1
n! ,

1
n! , . . . ,

1
n!

)T
over all n! permuta-

tions is a stationary distribution.

One of the main purposes of the course is to understand the MCMC
method. Therefore, the following four basic questions regarding sta-
tionary distributions are important.

• Does each Markov chain have a stationary distribution?

• If a Markov chain has a stationary distribution, is it unique?

• If the chain has a unique stationary distribution, does µt always
converge to it from any µ0?

• If µt always converges to the stationary distribution, what is the
rate of convergence?

2 Fundamental Theorem of Markov Chains

2.1 The Existence of Stationary Distribution

We will show that, for every finite Markov chain P , there exists some
π such that πTP = πT. Observe that this is equivalent to “1 is an eigen-
value of P T with a nonnegative eigenvector (P Tπ = π)".

We use the following lemma and theorem in linear algebra.

Lemma 3. Every eigenvalue of nonnegative matrix P is no larger than the
maximum row sum of P .

Proof. Let λ be a eigenvalue of P and x is the corresponding eigenvec-
tor. We have

∥λx∥∞ = ∥P x∥∞ ≤ ∥P ∥∞ · ∥x∥∞.

Note that ∥λx∥∞ = |λ|∥x∥∞ and ∥x∥∞ > 0. Thus, we have λ ≤ |λ| ≤ ∥P ∥∞,
that is λ is no larger than the maximum row sum of nonnegative
matrix P .

Theorem 4 (Perron-Frobenius Theorem). Each nonnegative matrix A

has a nonnegative real eigenvalue with spectral radius ρ(A) = a, and a has
a corresponding nonnegative eigenvector.

Let A = (aij )i∈[n],j∈[m]. We say A is
nonnegative (resp. positive) if every
aij ≥ 0 (resp. > 0).

We will prove the Perron-Frobenius theorem in Section 2.3.
Since P is a stochastic matrix, we have

P · 1 = 1.

Thus, P has an eigenvalue 1. Since every eigenvalue of P is no larger
than the row sum, 1 is the largest eigenvalue. Also, P T shares the same
characteristic polynomial with P , which implies the eigenvalues of P T
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and P are the same. As a result, ρ(P T) also equals to 1. According to
Perron-Frobenius theorem, there exists a nonnegative eigenvector π
such that

P Tπ = π,

which is equivalent to
πTP = πT.

It then follows that π
∥π∥1

is a stationary distribution of P .

2.2 Uniqueness and Convergence

Consider the following Markov chain with two states. Clearly, the

transition matrix of this Markov chain is

P =
[
1− p p

q 1− q

]
It is easy to verify that

π =
(

q

p+ q
,

p

p+ q

)T
is a stationary distribution of P .

We are going to check whether starting from any µ0, the distribu-
tion µt will always converge to π, i.e.,

lim
t→∞

∥∥∥µT0P t −πT
∥∥∥ = 0.

In our example, the distribution has only two dimensions and the sum
of the two components equals to 1, so we only need to check whether
the first dimension converges, i.e.,∣∣∣µT0P t(1)−π(1)

∣∣∣→ 0.
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Now we define

∆t ≜
∣∣∣µt(1)−π(1)

∣∣∣
=

∣∣∣µTt−1 · P (1)−π(1)
∣∣∣

=
∣∣∣∣∣ (1− p) ·µt−1(1) + q · (1−µt−1(1))−

q

p+ q

∣∣∣∣∣
=

∣∣∣∣∣∣ (1− p − q) ·µt−1(1) + q ·
(
1− 1

p+ q

) ∣∣∣∣∣∣
= |1− p − q| ·∆t−1

Therefore, we can see that ∆t→ 0 except in the two cases:

• p = q = 0,

• p = q = 1.

In fact, the two cases prevent convergence for different reasons.
Let us first consider the case when p = q = 0. The Markov chain

looks like: The transition graph is disconnected, so it can be parti-

tioned into two disjoint components. Since each component is still
a Markov chain, each of them has its own stationary distribution.
Notice that any convex combination of these small distributions is a
stationary distribution for the whole Markov chain. It immediately
follows that in this case the stationary distribution is not unique. It
gives a negative answer to the second question.

This observation motivates us to define the following:

Definition 5. (Irreducibility). A finite Markov chain is irreducible if its
transition graph is strongly connected.

If the transition graph of P is not strongly connected, we say P is
reducible.

When p = q = 1, the Markov chain looks like this: This transition
graph is bipartite. It is easy to see that ( 1

2 ,
1
2 ) is the unique stationary

distribution of it. However, for µ0 = (1,0), one can see that µt ocsillates
between "left" and "right". Therefore, the answer to the third question
is no.

This phenomenon is captured by the following notion:
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Definition 6. (Aperiodicity). A Markov chain is aperiodic if for any state
v, it holds that

gcd {|c| | c ∈ Cv} = 1,

where Cv denotes the set of the directed cycles containing v in the transi-
tion graph.

Otherwise, we call the chain periodic.
We have the following important theorem.

Theorem 7. (Fundamental theorem of Markov chains). If a finite Markov
chain P ∈ �n×n is irreducible and aperiodic, then it has a unique station-
ary distribution π ∈�n. Moreover, for any distribution µ ∈�n,

lim
t→∞

µTP t = πT.

2.3 Proof of Perron-Frobenius Theorem

Most proofs in the section are from [Mey00]. We first prove the
Perron-Frobenius theorem for positive matrices. Then we use this
theorem and Lemma 9 to prove Theorem 4.

In the following statement, we use | · | to denote a matrix or vector
of absolute values, i.e., |A| is the matrix with entries |aij |. We say a
vector or matrix is larger than 0 if all its entries are larger than 0 and
denote it by A > 0. We define the operation ≥, ≤ and < for vectors and
matrices similarly.

Theorem 8 (Perron-Frobenius Theorem for Positive Matrices). Each
positive matrix A > 0 has a positive real eigenvalue ρ(A), and ρ(A) has a
corresponding positive eigenvector.

Proof. We first prove that ρ(A) > 0. If ρ(A) = 0, then all the eigen-
values of A is 0 which is equivalent to that A is nilpotent. This is
impossible since every aij > 0. Thus ρ(A) > 0 for positive matrix A.

Assume that λ is the eigenvalue of A that |λ| = ρ(A). Then we have

|λ||x| = |λx| = |Ax| ≤ |A||x| = A|x|.

Then we show that |λ||x| < A|x| is impossible. Let z = A|x| and
y = z − ρ(A)|x|. Assume that y , 0, We have that Ay > 0. There must
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exist some ϵ > 0 such that Ay > ϵρ(A) · z or equivalently, A
(1+ϵ)ρ(A)z > z.

Successively multiply both sides of A
(1+ϵ)ρ(A)z > z by A

(1+ϵ)ρ(A) and we
have (

A
(1 + ϵ)ρ(A)

)k
z > · · · > A

(1 + ϵ)ρ(A)
z > z, for k = 1,2, . . . .

Note that limk→∞

(
A

(1+ϵ)ρ(A)

)k
→ 0 because ρ

(
A

(1+ϵ)ρ(A)

)
= ρ(A)

(1+ϵ)ρ(A) <

1. Then, in the limit, z < 0. This conflicts the fact that z > 0. The
assumption that y , 0 is invalid

Thus we have y = 0 which means ρ(A) is a positive eigenvalue of A
and |x| is the corresponding eigenvector. Since ρ(A)|x| = A|x| > 0, we
have |x| > 0.

Lemma 9. For A,B ∈�n×n, if |A| ≤ B, then ρ(A) ≤ ρ(B).

Proof. By spectral radius formula, we have that for any sub-multiplicative

norm ∥·∥, ρ(A) = limk→∞
∥∥∥Ak

∥∥∥ 1
k and ρ(B) = limk→∞

∥∥∥Bk
∥∥∥ 1

k .
Note that since |A| ≤ B, we have |A|k ≤ Bk for k ∈ �\ {0}. Then∥∥∥Ak
∥∥∥∞ ≤ ∥∥∥|A|k∥∥∥∞ ≤ ∥∥∥Bk

∥∥∥∞ and sequentially
∥∥∥Ak

∥∥∥ 1
k
∞ ≤

∥∥∥Bk
∥∥∥ 1

k
∞. Thus,

ρ(A) ≤ ρ(B).

Theorem 10. (Theorem 4 restated). Each nonnegative matrix A has a
nonnegative real eigenvalue with spectral radius ρ(A) = a, and a has a
corresponding nonnegative eigenvector.

Proof. Construct a matrix sequence {Ak}∞k=1 by letting Ak = A + E
k

where E is the matrix of all 1’s. Let ak = ρ(Ak) > 0 and xk > 0 is the
corresponding eigenvector.1 Without loss of generality, let ∥xk∥1 = 1. 1 The existance of such xk is guaranteed

by Theorem 8.Since {xk}∞k=1 is bounded, by Bolzano–Weierstrass theorem, there
exists a subsequence of {xk}∞k=1 in �

n that is convergent. Denote this
convergent subsequence by

{
xki

}∞
i=1

and
{
xki

}∞
i=1
→ z where z ≥ 0 and

z , 0 (for each xki satisfies that
∥∥∥xki∥∥∥1

= 1). Since {Ak}∞k=1 is monotone
decreasing, by Lemma 9, we have that a1 ≥ · · · ≥ ak ≥ a. Sequence
{ak}∞k=1 is nonincreasing and bounded, so limk→∞ ak → a∗ exists and
limi→∞ aki → a∗ ≥ a. Then we have

Az = lim
i→∞

Akixki = lim
i→∞

akixki = a∗z.

Thus, a∗ is an eigenvalue of A and a∗ ≤ a. Then we have a∗ = a. So
A has a nonnegative real eigenvalue a and z is the corresponding
nonnegative eigenvetor.

3 Coupling

To measure how close the two distributions are, we need to define a
distance between them.

https://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierstrass_theorem
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Definition 11 (Total Variation Distance). . The total variation distance
between two distributions µ and ν on a countable state space Ω is given by

DTV(µ,ν) =
1
2

∑
x∈Ω

∣∣∣µ(x)− ν(x)
∣∣∣.

We can look at the following figure of two distributions on the
sample space. The total variation distance is half the area enclosed by
the two curves.

This figure gives us the intuition of the following proposition
which states that the total variation distance can be equivalently
viewed in another way.

Proposition 12. We define µ(A) =
∑
x∈A

µ(x), ν(A) =
∑

x∈A ν(x), then we

have

DTV(µ,ν) = max
A⊆Ω

∣∣∣µ(A)− ν(A)
∣∣∣.

Our main tool to bound the distance between two distributions is
the coupling. This is a useful technique in analysis of probabilities. A
coupling of two distributions is simply a joint distribution of them.

Definition 13 (Coupling). . Let µ and ν be two distributions on the same
space Ω. Let ω be a distribution on the space Ω×Ω. If (X,Y ) ∼ ω satisfies
X ∼ µ and Y ∼ ν, then ω is called a coupling of µ and ν.

In other words, the marginal probabil-
ities of the disjoint distribution ω are
µ and ν respectively. A special case is
when x and y are independently. How-
ever, in many applications, we want x
and y to be correlated while keeping
their respect marginal probabilities
correct.

We now give a toy example about how to construct different cou-
plings on two fixed distributions. There are two coins: the first coin
has probability 1

2 for head in a toss and 1
2 for tail, and the second coin

has probability 1
3 and 2

3 respectively. We now construct two couplings
as follows.

The table defines a joint distribition and the sum of a certain
row/column equal to the corresponding marginal probability. It is
clear that both table are couplings of the two coins. Among all the
possible couplings, sometimes we are interested in the one who is
“mostly coupled”.
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Lemma 14 (Coupling Lemma). . Let µ and ν be two distributions on a
sample space Ω. Then for any coupling ω of µ and ν it holds that,

Pr(X,Y )∼ω [X , Y ] ≥DTV(µ,ν).

And furthermore, there exists a coupling ω∗ of µ and ν such that

Pr(X,Y )∼ω∗ [X , Y ] = DTV(µ,ν).

Proof. For finite Ω, designing a coupling is equivalent to filling a
Ω×Ω matrix in the way that the marginals are correct.

Clearly we have

Pr [X = Y ] =
∑
t∈Ω

Pr [X = Y = t]

≤
∑
t∈Ω

min
{
µ(t),ν(t)

}
.

Thus,

Pr [X , Y ] ≥ 1−
∑
t∈Ω

min(µ(t),ν(t))

=
∑
t∈Ω

(µ(t)−min
{
µ(t),ν(t)

}
)

= max
A⊆Ω

{
µ(A)− ν(A)

}
= DTV(µ,ν).

To construct ω∗ achieving the equality, for every t ∈Ω, we let Pr(X,Y )∼ω∗ [X = Y = t] =
min

{
µ(t),ν(t)

}
.

The coupling lemma provides a way to
upper bound the distance between two
distributions: For any two distributions
µ and ν and any coupling ω of µ and ν,
an upper bound for Pr(X,Y )∼ω [X , Y ] is
an upper bound for DT V (µ,ν). This is a
quite useful approach to bound the total
variation distance.
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