
[AI2613 Lecture 14] Itô Integral, Itô Formula
June 9, 2023

1 Itô Integral

Recall that in the last lecture, we formalized a diffusion {𝑋 (𝑡)} as

d𝑋 (𝑡) = 𝜇 (𝑡, 𝑋 (𝑡)) d𝑡 + 𝜎 (𝑡, 𝑋 (𝑡)) d𝑊 (𝑡),

where {𝑊 (𝑡)} is a standard Brownian motion1. With this formalization, 1 Here we generalize the specification in
the last lecture and allow 𝜇 and 𝜎2 to be
functions of two variables, time 𝑡 and
position 𝑋 (𝑡 ) .

the motion of {𝑋 (𝑡)} in a tiny time interval [𝑡, 𝑡 + ℎ] can be view as a
moving under the differential equation d𝑋 (𝑡 )

d𝑡 = 𝜇 (𝑡, 𝑋 (𝑡)) d𝑡 with a random
perturbation 𝜎 (𝑡, 𝑋 (𝑡)) d𝑊 (𝑡). In this lecture, we define the mathematical
meaning of the above stochastic differential equation.

Given an ordinary differential equation d𝑓 (𝑡) = 𝑓 (𝑡) d𝑡 , we have that,

∀𝑇,
∫ 𝑇

0
d𝑓 (𝑡) =

∫ 𝑇

0
𝑓 (𝑡) d𝑡,

which is equivalent to

∀𝑇, 𝑓 (𝑡) = 𝑓 (0) +
∫ 𝑇

0
𝑓 (𝑡) d𝑡 .

If we apply the same process to the stochastic differential equation

d𝑋 (𝑡) = 𝜇 (𝑡, 𝑋 (𝑡)) d𝑡 + 𝜎 (𝑡, 𝑋 (𝑡)) d𝑊 (𝑡),

we have that

∀𝑇, 𝑋 (𝑇 ) = 𝑋 (0) +
∫ 𝑇

0
𝜇 (𝑡, 𝑋 (𝑡)) d𝑡 +

∫ 𝑇

0
𝜎 (𝑡, 𝑋 (𝑡)) d𝑊 (𝑡). (1)

If we regard {𝑋 (𝑡)} as a function defined on the sample space Ω, for a fixed
𝜔 ∈ Ω, {𝑋𝜔 (𝑡)} and {𝑊𝜔 (𝑡)} are fixed paths. Then Equation (1) means
∀𝑇,∀𝜔 ∈ Ω,

𝑋𝜔 (𝑇 ) = 𝑋𝜔 (0) +
∫ 𝑇

0
𝜇 (𝑡, 𝑋𝜔 (𝑡)) d𝑡 +

∫ 𝑇

0
𝜎 (𝑡, 𝑋𝜔 (𝑡)) d𝑊𝜔 (𝑡) .

Note that
∫ 𝑇

0 𝜇 (𝑡, 𝑋𝜔 (𝑡)) d𝑡 is the ordinary Riemann integral of 𝜇 (𝑡, 𝑋𝜔 (𝑡)).
The main goal today is to rigorously define the meaning of

∫ 𝑇

0 𝜎 (𝑡, 𝑋𝜔 (𝑡)) d𝑊𝜔 (𝑡).
Our first try is the Riemann-Stieltjes integral.

1.1 Riemann-Stieltjes Integral

Recall that when we define the Riemann integral of function 𝑔 on [0,𝑇 ], we
divide the interval into 𝑛 segments [𝑡0, 𝑡1], [𝑡1, 𝑡2], . . . , [𝑡𝑛−1, 𝑡𝑛] where each
𝑡𝑖 − 𝑡𝑖−1 → 0 when 𝑛 → ∞. Then the Riemann integral is defined by∫ 𝑇

0
𝑔(𝑡) d𝑡 = lim

𝑛→∞

𝑛∑
𝑖=1

𝑔(𝑡∗𝑖 ) (𝑡𝑖 − 𝑡𝑖−1) ,
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𝑡0 = 0 𝑡1 𝑡2 𝑡3 𝑡4 · · · · · · 𝑡𝑛 = 𝑇

where 𝑡∗𝑖 can be an arbitrary point in [𝑡𝑖−1, 𝑡𝑖 ]. The Riemann-Stieltjes integral is commonly
used in probability theory. Let 𝑋 be a
random variable on sample space [0, 1].
Assume that the CDF of 𝑋 is 𝐹 and the
PDF of 𝑋 is 𝑓 . Then the expectation of 𝑋 is
E [𝑋 ] =

∫ 1
0 𝑋 𝑑𝐹 (𝑡 ) . By the definition of

the Riemann-Stieltjes integral, we have∫ 1

0
𝑋 𝑑𝐹 = lim

𝑛→∞
𝑋 (𝑡∗𝑖 ) (𝐹 (𝑡𝑖 ) − 𝐹 (𝑡𝑖−1 ) )

= lim
𝑛→∞

𝑋 (𝑡∗𝑖 ) 𝑓 (𝑡𝑖−1 ) (𝑡𝑖 − 𝑡𝑖−1 ) + 𝑜 (1),

which yields that E [𝑋 ] =
∫ 1
0 𝑋 (𝑡 ) 𝑑𝐹 (𝑡 )

=
∫ 𝑇

0 𝑋 (𝑡 ) 𝑓 (𝑡 ) 𝑑𝑡 .

Let 𝐹 : [0,𝑇 ] → ℝ be a nice enough function. Assume notations defined
above. Then the Riemann-Stieltjes integral of 𝑔 with respect to 𝐹 is defined
by ∫ 𝑇

0
𝑔(𝑡) d𝐹 (𝑡) ≜ lim

𝑛→∞

𝑛∑
𝑖=1

𝑔(𝑡∗𝑖 ) (𝐹 (𝑡𝑖 ) − 𝐹 (𝑡𝑖−1)) .

When 𝐹 is the standard Brownian motion {𝑊 (𝑡)}, the Riemann-Stieltjes
integral indicates that∫ 𝑇

0
𝑔(𝑡) d𝑊 (𝑡) = lim

𝑛→∞

𝑛∑
𝑖=1

𝑔(𝑡∗𝑖 ) (𝑊 (𝑡𝑖 ) −𝑊 (𝑡𝑖−1)) .

However, since the Brownian motion is not a function of bounded vari-
ation,

∑𝑛
𝑖=1 𝑔(𝑡∗𝑖 ) (𝑊 (𝑡𝑖 ) −𝑊 (𝑡𝑖−1)) may not be convergent2. Thus, we 2 It might be convergent for some specific

functions 𝑔. However, this does not hold in
general.

cannot find a random variable 𝑌 such that for almost every 𝜔 ∈ Ω,
𝑌 (𝜔) = lim𝑛→∞

∑𝑛
𝑖=1 𝑔(𝑡∗𝑖 ) (𝑊𝜔 (𝑡𝑖 ) −𝑊𝜔 (𝑡𝑖−1)). This indicates that∫ 𝑇

0 𝑔(𝑡) d𝑊 (𝑡) is not well-defined with the Riemann-Stieltjes integral.

1.2 Itô Integral

Consider the example of
∫ 𝑇

0 𝑊 (𝑡) d𝑊 (𝑡). Let Δ𝑖𝑊 ≜ 𝑊 (𝑡𝑖 ) −𝑊 (𝑡𝑖−1) and
𝑆𝑛 ≜

∑𝑛
𝑖=1𝑊 (𝑡𝑖−1)Δ𝑖𝑊 . By direct calculation, we have that

𝑆𝑛 =
1
2
𝑊 2

𝑇 − 1
2

𝑛∑
𝑖=1

(Δ𝑖𝑊 )2 .

Let 𝑄𝑛 ≜
∑𝑛

𝑖=1 (Δ𝑖𝑊 )2. Note that Δ𝑖𝑊 ∼ N(0,Δ𝑖 ) where Δ𝑖 ≜ 𝑡𝑖 − 𝑡𝑖−1. Then

E [𝑄𝑛] =
𝑛∑
𝑖=1

E
[
(Δ𝑖𝑊 )2

]
=

𝑛∑
𝑖=1

Δ𝑖 = 𝑇,

and

Var [𝑄𝑛] =
𝑛∑
𝑖=1

Var
[
(Δ𝑖𝑊 )2

]
=

𝑛∑
𝑖=1

E
[
(Δ𝑖𝑊 )4

]
−

𝑛∑
𝑖=1

E
[
(Δ𝑖𝑊 )2

]2
= 2

𝑛∑
𝑖=1

Δ2
𝑖 ≤ 2

(
max
𝑖∈[𝑛]

Δ𝑖

)
·

𝑛∑
𝑖=1

Δ𝑖
𝑛→∞−→ 0.

Note that Var [𝑄𝑛] = E
[
(𝑄𝑛 − E [𝑄𝑛])2

]
= E

[
(𝑄𝑛 −𝑇 )2

]
, and therefore

E
[
(𝑄𝑛 −𝑇 )2

]
→ 0 as 𝑛 → ∞. This means that 𝑄𝑛 converges to 𝑇 is the

following mean square sense.
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Definition 1 (Mean Square Convergence). Let 𝑍1, 𝑍2, . . . and 𝑍 be random
variables that E

[
𝑍 2] < ∞ and E

[
𝑍 2
𝑛

]
< ∞ for 𝑛 ≥ 1. We say 𝑍𝑛 → 𝑍 in

mean square, or 𝑍 is the mean square limit of {𝑍𝑛}, if lim𝑛→∞ E
[
(𝑍𝑛 − 𝑍 )2

]
=

0.

Itô integral is defined in a similar way.

Definition 2. Assume that {𝑋 (𝑡)} is a “nice enough” stochastic process 3. 3 This means that the process has some nice
properties such as 𝑋 (𝑡 ) is independent
with {𝑊 (𝑢 ) }𝑢>𝑡 for all 𝑡 . Some other
technical requirements can be found in any
standard textbook on stochastic differential
equations (e.g., [Kle12])

Then we define the integral
∫ 𝑇

0 𝑋 (𝑡) d𝑊 (𝑡) as the mean square limit of

𝑛∑
𝑖=1

𝑋 (𝑡𝑖−1) (𝑊 (𝑡𝑖 ) −𝑊 (𝑡𝑖−1)) .

This is called the Itô integral of {𝑋 (𝑡)} with respect to {𝑊 (𝑡)}.

With Definition 2, we can verify that∫ 𝑇

0
𝑊 (𝑡) d𝑊 (𝑡) = 1

2
𝑊 2

𝑇 − 1
2
𝑇 .

More generally, we may define
∫ 𝑇

0 𝑋 (𝑡) d𝑊 (𝑡) as the mean square limit
of

𝑛∑
𝑖=1

𝑋 (𝑡∗𝑖 ) (𝑊 (𝑡𝑖 ) −𝑊 (𝑡𝑖−1))

where 𝑡∗𝑖 = 𝛼𝑡𝑖−1 + (1 − 𝛼)𝑡𝑖 with 𝛼 ∈ [0, 1]. The Itô integral defined in Since we can define integrals for all 𝛼 ∈
[0, 1], it is natural to ask which value of
𝛼 produces the “correct” one? Actually,
the best choice of 𝛼 depends on how you
want to model the stochastic process. For
example, when we view a diffusion {𝑋𝑡 }
as the limit of a certain discrete process,
the motion during [𝑡, 𝑡 + ℎ] for a tiny
ℎ is specified by 𝜇 (𝑡, 𝑋𝑡 ) and 𝜎2 (𝑡, 𝑋𝑡 ) .
So it is reasonable to specify a diffusion
with Itô integral. However, for many
stochastic processes from physics which
are continuous in nature, it turns out
that Stratonovich integral fits better. See
discussions in [MM22].

Definition 2 corresponds to the case that 𝛼 = 1. By choosing 𝛼 = 1
2 , we have

the definition of Stratonovich integral and it holds that
∫ 𝑇

0 𝑊 (𝑡) d𝑊 (𝑡) =
1
2𝑊

2
𝑇 with Stratonovich integral.

2 Itô Formula

Recall that in the example in Section 1.2, we have

𝑄𝑛 =
𝑛∑
𝑖=1

(𝑊 (𝑡𝑖 ) −𝑊 (𝑡𝑖−1))2 , E [𝑄𝑛] = 𝑇 and Var [𝑄𝑛]
𝑛→∞−→ 0.

Note that when 𝑛 → ∞, Δ𝑖𝑊 = d𝑊 (𝑡𝑖−1). Then

∀𝑇,
∫ 𝑇

0
( d𝑊 (𝑡𝑖−1))2 = 𝑇 =

∫ 𝑇

0
d𝑡 .

This suggests that ( d𝑊 (𝑡))2 ≈ d𝑡 holds. By definition of {𝑊 (𝑡)}, we know
that d𝑊 (𝑡) = 𝑊 (𝑡 + d𝑡) −𝑊 (𝑡) ∼ N (0, d𝑡). Let 𝑋 and 𝑌 be two random
variables that 𝑋 ∼ N(0, d𝑡) and 𝑌 = 𝑋 2. Then the formula ( d𝑊 (𝑡))2 ≈ d𝑡
tells us that 𝑌 is well concentrated on d𝑡 .

With this observation, we then (heuristically) deduce the chain rule
under the definition of Itô integral.
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2.1 Classical Chain Rule of Differentiation

In the classical context, for any two differentiable functions 𝑔 and 𝑓 , the
chain rule of differentiation is

d𝑓 (𝑔(𝑡))
d𝑡

= 𝑓 ′ (𝑔(𝑡)) · 𝑔′ (𝑡).

This can be verified using the Taylor expansion:

d𝑓 (𝑔(𝑡)) = 𝑓 (𝑔(𝑡 + d𝑡)) − 𝑓 (𝑔(𝑡))
= 𝑓 (𝑔(𝑡) + d𝑔(𝑡)) − 𝑓 (𝑔(𝑡))

= 𝑓 ′ (𝑔(𝑡)) d𝑔(𝑡) + 1
2
𝑓 ′′ (𝑔(𝑡)) ( d𝑔(𝑡))2 + 1

6
𝑓 ′′′ (𝑔(𝑡)) ( d𝑔(𝑡))3 + 𝑜 (( d𝑔(𝑡))3).

Then it follows that
d𝑓 (𝑔(𝑡))

d𝑡
= 𝑓 ′ (𝑔(𝑡)) · 𝑔′ (𝑡) + 𝑜 ( d𝑡) = 𝑓 ′ (𝑔(𝑡)) · 𝑔′ (𝑡),

where d𝑡 tends to 0.

2.2 The Chain Rule with Itô Integral

Similarly, we have

d𝑓 (𝑊 (𝑡)) = 𝑓 (𝑊 (𝑡) + d𝑊 (𝑡)) − 𝑓 (𝑊 (𝑡))

= 𝑓 ′ (𝑊 (𝑡)) d𝑊 (𝑡) + 1
2
𝑓 ′′ (𝑊 (𝑡)) ( d𝑊 (𝑡))2 + 1

6
𝑓 ′′′ (𝑊 (𝑡)) ( d𝑊 (𝑡))3 + 𝑜 (( d𝑊 (𝑡))3).

This yields the Itô formula

d𝑓 (𝑊 (𝑡)) = 𝑓 ′ (𝑊 (𝑡)) d𝑊 (𝑡) + 1
2
𝑓 ′′ (𝑊 (𝑡)) d𝑡,

as d𝑡 → 0.
Consider a diffusion {𝑋 (𝑡)} that

d𝑋 (𝑡) = 𝜇 (𝑡, 𝑋 (𝑡)) d𝑡 + 𝜎 (𝑡, 𝑋 (𝑡)) d𝑊 (𝑡).

By the Itô formula, we have

d𝑓 (𝑋 (𝑡)) = 𝑓 (𝑋 (𝑡) + d𝑋 (𝑡)) − 𝑓 (𝑋 (𝑡))

= 𝑓 ′ (𝑋 (𝑡)) d𝑋 (𝑡) + 1
2
𝑓 ′′ (𝑋 (𝑡)) ( d𝑋 (𝑡))2

= 𝑓 ′ (𝑋 (𝑡)) 𝜇 (𝑡, 𝑋 (𝑡)) d𝑡 + 𝑓 ′ (𝑋 (𝑡)) 𝜎 (𝑡, 𝑋 (𝑡)) d𝑊 (𝑡) + 1
2
𝑓 ′′ (𝑋 (𝑡)) (𝜎 (𝑡, 𝑋 (𝑡)))2 d𝑡

Then we see some examples of Itô formula.

Example 1 (Geometric Brownian Motion). Recall the geometric Brownian
motion 𝑌 (𝑡) = 𝑓 (𝑋 (𝑡)) where 𝑓 is the exponential function and {𝑋 (𝑡)} is a
diffusion specified by 𝜇 (𝑡, 𝑋 (𝑡)) ≡ 0 and 𝜎 (𝑡, 𝑋 (𝑡)) ≡ 1. Then it follows from
the Itô formula that

d𝑌 (𝑡) = 𝑒𝑋 (𝑡 )
(
d𝑊 (𝑡) + 1

2
d𝑡
)
= 𝑌 (𝑡) d𝑊 (𝑡) + 𝑌 (𝑡)

2
d𝑡 .
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Example 2 (Ornstein-Uhlenbeck Process). Let {𝑋 (𝑡)} be a Ornstein-
Uhlenbeck process that d𝑋 (𝑡) = −𝑋 (𝑡) d𝑡 + 2 d𝑊 (𝑡). Let 𝑓 (𝑡, 𝑥) = 𝑒𝑡 · 𝑥 .
We adopt the following notations:

𝑓𝑡 (𝑡0, 𝑥0) =
𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥

���
𝑡=𝑡0,𝑥=𝑥0

,

𝑓𝑡𝑥 (𝑡0, 𝑥0) =
𝜕

𝜕𝑡

𝜕

𝜕𝑥
𝑓 (𝑡, 𝑥)

���
𝑡=𝑡0,𝑥=𝑥0

.

and similarly define 𝑓𝑥 (𝑡0, 𝑥0), 𝑓𝑥𝑥 (𝑡0, 𝑥0), 𝑓𝑡𝑡 (𝑡0, 𝑥0), and 𝑓𝑥𝑡 (𝑡0, 𝑥0). Then
𝑓 (𝑡, 𝑋 (𝑡)) = 𝑒𝑡 · 𝑋 (𝑡) and using Taylor expansion, we have

d𝑓 (𝑡, 𝑋 (𝑡)) = 𝑓 (𝑡 + d𝑡, 𝑋 (𝑡 + d𝑡)) − 𝑓 (𝑡, 𝑋 (𝑡))
= 𝑓𝑡 (𝑡, 𝑋 (𝑡)) d𝑡 + 𝑓𝑥 (𝑡, 𝑋 (𝑡)) d𝑋 (𝑡)

+ 1
2
(
𝑓𝑡𝑡 (𝑡, 𝑋 (𝑡)) ( d𝑡)2 + 2𝑓𝑡𝑥 (𝑡, 𝑋 (𝑡)) d𝑡 d𝑋 (𝑡) + 𝑓𝑥𝑥 (𝑡, 𝑋 (𝑡)) ( d𝑋 (𝑡))2

)
= 𝑓𝑡 (𝑡, 𝑋 (𝑡)) d𝑡 + 𝑓𝑥 (𝑡, 𝑋 (𝑡)) d𝑋 (𝑡) + 1

2
𝑓𝑥𝑥 (𝑡, 𝑋 (𝑡)) ( d𝑋 (𝑡))2 + 𝑜 ( d𝑡)

Note that 𝑓𝑥𝑥 (𝑡, 𝑋 (𝑡)) = 0. Thus

d𝑓 (𝑡, 𝑋 (𝑡)) = 𝑓𝑡 (𝑡, 𝑋 (𝑡)) d𝑡 + 𝑓𝑥 (𝑡, 𝑋 (𝑡)) d𝑋 (𝑡)
= 𝑒𝑡𝑋 (𝑡) d𝑡 + 𝑒𝑡 d𝑋 (𝑡)
= 2𝑒𝑡 d𝑊 (𝑡).

This yields that d(𝑒𝑡𝑋 (𝑡)) = 2𝑒𝑡 d𝑊 (𝑡) and sequentially

𝑋 (𝑇 ) = 𝑒−𝑇
(∫ 𝑇

0
2𝑒𝑡 d𝑊 (𝑡) + 𝑋 (0)

)
.
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