[AI2613 Lecture 12] Gaussian Processes, Brownian
Bridge
Fune 9, 2023

1 Gaussian Processes and Brownian Motion

In the last lecture, we defined the standard Brownian motion:

Definition 1 (Standard Brownian Motion / Wiener Process). We say a
stochastic process {W (t) };», is a standard Brownian motion or Wiener process
if it satisfies

« W(0)=0;

« Independent increments: V0 < t) < t; < --- < t,, W(t1) — W(k),
W(ty) —W(ty), ..., W(t,) — W(t,—1) are mutually independent;

. Stationary increments: Vs,t > 0, W(s +t) — W(s) ~ N(0,1);
« W(t) is continuous almost surely.!

Today we will give another characterization of Brownian motions in
terms of the Gaussian process. First recall the notion of high dimensional
Gaussian distribution. A vector of random variables (X1, Xa, . .., X,,) is said
to be Gaussian iff Vay, as, . . ., an, 2,1=; a;X; is a one-dimensional Gaussian.
Let pu = (1, fa, - - -, pin) Where p; = E[X;]. Let = = (Cov(X;, Xj))i,j' Then the
probability density function f of (X1, Xz, ..., Xy) is

for x = (x1, X2, .. ., %), f(x) = (27)7F - |detZ| 2 - g2 (- 27 (xmp),

Definition 2 (Gaussian Process). A stochastic process {X(t)};s, is called
Gaussian process if VO < t; < tp < -+ < ty, (X(11), X(t2), ..., X (tn)) is
Gaussian.

Note that a Gaussian vector can be characterized by its mean vector and
the covariance matrix. Standard Brownian motion is a special family of

Gaussian processes where the covariance of X (s) and X () is s A t.

Definition 3 (Standard Brownian Motion/Standard Wiener Process). We
say a stochastic process {W (t)},s, is a standard Brownian motion or Wiener

process if it satisfies

o {W(t)};s¢ is an almost surely continuous Gaussian Process;
e Vs> 0,E[W(s)] =0;

« Y0 <s<t,Cov(W(s), W(t)) =s.

We will show that it is easier to use Definition 3 to verify that a certain
stochastic process is a Brownian motion. Let us first verify that the two

definitions are equivalent.

! Let Q be the sample space. Then W can be
viewed as a mapping from R x Q to R. The
meaning of “W (¢) is continuous almost
surely” is: 3Q¢ € Q with Pr[Qg] = 1 such
that Yo € Qp, W (t, w) is continuous with
regard to ¢.
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Proposition 4. The two definitions of standard Brownian motions are equiv-
alent.

Proof. Given Definition 1, it is easy to know that E [W(s)] = 0 for all
s > 0since W(s) ~ N(0,s). What we need is to verify that {W(t)},5, in
Definition 1 is a Gaussian process and to compute the covariance of W (s)
and W (t) in Definition 1.

Note that V0 < s < t and Va, b, we have

aW (s) + bW () = (a + bYW (s) + b(W(t) — W(s)).

Since W (s) and W (t)—W (s) are two independent Gaussian’s, aW (s)+bW (t)
is still a Gaussian.
By the distributive law of covariance, for any 0 < s < ¢, we have

Cov(W(s), W(t)) = Cov(W(s), W(t) — W(s) + W(s))
= Cov(W(s), W(t) — W(s)) + Cov(W(s), W(s))
= Var [W(s)] =s.

Then we consider the counterpart. Given Definition 3, we can deduce the
first and fourth property in Definition 1 directly. For any 0 < t;_; < t; <
tj—l < tj, we have

Cov(W(t;) = W(ti—1), W(t;) — W(tj-1))
= Cov(W(t;), W(t;)) + Cov(W (ti-1), W(tj-1))
— Cov(W (), W(tj-1)) — Cov(W (ti-1), W(z;))
=ti+ti1—ti—ti-1=0,
which yields the independence of W (t;) — W (t;—1) and W(¢t;) — W(tj-1).
Thus, the {W(t)},, in Definition 3 satisfies independent increments.

It is easy to verify that Vs, t > 0, W(s +1t) — W(s) is a Gaussian with mean
0. Note that

Var [W(t+s) — W(s)] =E [(W(t +5s) — W(s))z]
=E[W(t+5)*] +E[W(s)*] = 2E [W(t+s)W(s)]

= Var [W(t + s)z] + Var [W(s)z] —2Cov (W (t +5s), W(s))

=t+s+s—2s=t.
Thus, the {W(t)},5, in Definition 3 satisfies stationary increments. O

Example 1. Suppose {W (1)}, is a standard Brownian motion. We claim
that {X(t)};s is also a standard Brownian motion where X(0) = 0 and
X(t) =t-W(3) fort>0.

We verify the three requirements in Definition 3.

Since X(t) =t - W(%) which is the composition of two (almost surely)
continuous function, {X(t)},s is continuous almost surely as well. For any

It is worth noting that the sum of two
Gaussians is not necessarily a Gaussian, un-
less they are joint Gaussian. Independence
is just a special case of joint Gaussian (the
covariance is zero).



[A12613 LECTURE 12] GAUSSIAN PROCESSES, BROWNIAN BRIDGE

a1, ag, ..., an andty, by, ...ty 2 0, X0 a; X () = Y, aiti - W(%). Since
{W ()} is standard Brownian motion, ), a;t; - W(%) is Gaussian. Thus,

{X(#)};s¢ is a Gaussian process. For0 < s < t,
Cov(X(s), X (1)) = Cov(sW(%), tW(%))
— st COV(W(%), W(%))
1
=st-—=35.
t

Thus, {X(t)};»¢ is a standard Brownian motion.

2 Brownian Bridge

In the last lecture, we already caluclated the distribution of W (#) condi-
tioned on W (u) = x for some u > t. We use X(t) to denote this process, and

X(t) is usually called a Brownian bridge.

Figure 1: A Brownian bridge

We know from previous calculations that X (¢) ~ N (ﬁx, @) is a
Gaussian. Since the conditional distribution of a multidimensional Gaussian
distribution is Gaussian as well, X (t) is a Gaussian process. As a result, it is
useful to compute the covariance of this process.

Recall W () is a standard Brownian motion. For any s < t, we have E[W(t)? |W(u) =x]| = Var [X(¢)] +
E[X(1)]?
Cov(X(s), X (t))

= Cov (W(s), W(t) | W (1) = x)
=E[W(s) -W(t) | W(u) =x] —E[W(s) | W(u) =x] -E[W(t) | W(u) = x]

= [ WBIWE W =3 W) =31 vy i (v |00 dy -

- ;E [W()? | W) =x] - 2—23(2
s(u—t)
-2e=d)

Definition 5 (Standard Brownian Bridge). A standard Brownian motion
ending at W(1) = 0 is called a standard Brownian bridge.

We can verify that X () = W(t) — tW(1) is a standard Brownian bridge
by calculating its mean and covariances.
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Again like we did in the last lecture, we can compute the hitting time of
a standard Brownian bridge using the principle of reflection.

Example 2 (Hitting Time in a Brownian Bridge). Let {W(¢)},s, be a stan-
dard Brownian motion. Let 7, = inf {t > 0 | W(t) > b}. Then we compute
Pr [z, < u| W(u) = x]. Note that ifb < x,Pr [t <u | W(u) =x] = 1. Lety
be the probability density function of standard Gaussian distribution, that is,
U(x) = \/%7[ e ¥ Ifb > x, letting dx be an infinitesimal change, we have

L _Pring <unW(u) € [x,x+dx]]
Prin, <ul W) == = e mx+ vl

_Prlr, <u] -Pr{W(u) € [x,x+dx] | 7, <u]
- Ju(x) dx '

If we have known the value of 7, and 7, < u, we can regard {W(u)},5,, as

a Brownian motion starting from b. Then we have
Prir, <u] -Pr[W(u) € [x,x+dx] | 7p <u] =Pr[r, <u] -Pr[W(u) € [2b —x —dx,2b—x] | 7p < u]

=Prr, <uAW(u) € [2b—x—dx,2b - x]]
=Pr[W(u) € [2b—x — dx, 2b — x]]

= fu(2b —x) dx
Thus, whenb > x,Pr [, <u | W(u) =x] = % = 22

When b = x, we have

_ Prz, <uAW(u) € [b,b+db]]

Prr, <u|W(u) =0] Pr [W(u) € [b,b+db]]

Note that

Pric, <uAW(u) e [bb+db]] =Pr[rp, <u] —Prmy, <uAW(u) >b+db] —Prr, <uAW(u) <b].
(1)

We know that Pr [1, < u] =2 (1 -d (\%)) Note that

Prr, <uAW(u)>b+db] =Pr[W(u) > b+db]

:1—<I>(%)—Pr[W(u) e [b,b+db]].

And

Pric, <uAW(u) <b]=Prr <u] -Pr[W(u) <b|r <ul
=1 P =1-9 b
=5 rim, <u]=1- ($)

Thus, Equation (1) equals to Pr [W(u) € [b,b + db]] and

Prig <u|W(u)=0b]=1
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3 Kolmogorov-Smirnov Test

In this section, we introduce an application of Brownian Bridge, the Kolmogorov-
Smirnov test.

Suppose that Uy, Uy, . . ., U, are independently sampled from some distri-
bution [0, 1] with CDF F. We would like to check if it is a uniform distribu-
tion, i.e., if the F satisfies F(t) =t for every t € [0, 1].

Let l?n be the empirical cumulative distribution function, that is, for
t € [0,1], ﬁn(t) = % 1 1[U; < t]. Tt then follows from the law of large
numbers that

B =S E [Fn(t)] - % zn: Pr[U; < t] = F(t).
i=1

The idea of Kolmogorov-Smirnov test is to monitor the variable Fn(t) —t
for every t € [0, 1] and reject the uniformity hypothesis if there exists some
t that |Fn(t) - t| is large. Then our goal is to find a suitable rejection thresh-
old b such that if F is indeed a uniform distribution, the failure probability
limy, o Pr [maxte[o,l] ‘Fn(t) - t) > b] is sufficiently small (i.e., < Wlo)- If Fis

a uniform distribution, for a fixed ¢, we have
E [Fn(t)] —F(1) = t;
~ 1 <& 1
Var [Fo(0)| = = Y Var [1[U; < 111 = — - t(1 - 1),
n? & n

Let X,,(t) £ \/n - (l?n(t) —t) for t € [0, 1]. By the Central Limit Theorem,
we have X, (f) ~ N (0,¢(1 —t)) whenn — co. Forany 0 <s <t < 1,

Cov(X,(s), Xx(£)) = 1 - Cov (Fn(s) _ s Flt) - t)

= ~Cov (Z 1[U; < s],il[Ui < t])

i=1 i=1
= Cov (1[U1 < S], 1[U1 < t])
=Pr[U; <s,U; <t]-Pr[U; <s]Pr[U; <t]
=s(1-1).

Forany 0 < t; <t < --- <t < L let = = (Cov (Xn(ti),Xn(tj)))ij. It

follows from the high-dimensional Central Limit Theorem that
D
X (), Xn(£2), - Xn(1)T — N (0,3) ~ (X(12), X (£2), ..., X (1)),

where {X ()} is a standard Brownian Bridge. Then using the result in
Example 2, we have

n—oo

lim Pr | max l?n(t) —-t>b
te[o,1]

=Pr [ max X(t) > \/ﬁb]
te[0,1]

=Pr [T\/,;b <1 ) wW(1) = 0] = exp{—2nb*}.
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