[AI2613 Lecture 11] Brownian Motion
May 14, 2023

1 Brownian Motion

Brownian motion describes the random motion of small particles
suspended in a liquid or in a gas. This process was named after the
botanist Robert Brown, who observed and studied a jittery motion
of pollen grains suspended in water under a microscope. Later, Al-
bert Einstein gave a physical explanation of this phenomenon. In
mathematics, Brownian motion is characterized by the Wiener pro-
cess, named after Norbert Wiener, a famous mathematician and the
originator of cybernetics.

To motivate the definition of Brownian motion, we start from the
1-D random walk starting from 0. Let Z; be our position at time ¢
and X; be the move of the ¢-th step. The value of X; is chosen from
{-1,1} uniformly at random. Note that Z; = 0 and Z;,; = Z; + X;. So
Zr = ZtT:_Ol X;. Then we have

T-1
E[Z7]=0and Var[Z7] = ZVar [X:]=T.
=0

Suppose now we move with every At seconds and with step length

T
d. Then our position at time T is Z(T) = 6)_*, X;. We are interested in
the behavior of the prcoess when At — 0. We have

T

E[Z(T)]=0and Var[Z(T)] = 52 ;Var (X,] = 52. %

We can identify the expectation and the variance of this process
with the discrete random walk when At — 0 by choosing 6 = VAt. It
follows from the central limit theorem that

B

t

Z(T)=VAt) X, A0 VAN (0, %) = N(0,T).
t=1

In other words, the “continuous” version of the 1-D random walk
follows N (0, T) at time T. This is the basis of the Wiener process.
Now we introduce its formal definition.

Definition 1 (Standard Brownian Motion / Wiener Process). We say
a stochastic process {W (t)}; is a standard Brownian motion or Wiener
process if it satisfies

. W(0)=0;
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* Independent increments: VO <ty < f; < --- < t,, W(t1) — W(tp),
W(ty)-W(ty), ..., W(t,)— W(t,_1) are mutually independent;

* Stationary increments: Vs,t > 0, W(s+t)— W(s) ~ N(0,t);

o W(t) is continuous almost surely.1 " Let Q be the sample space. Then
W can be viewed as a mapping from
Recall that the probability density of the Gaussian distribution R x () to R. The meaning of “W(#) is
N 2\ . continuous almost surely” is: 3Qy € Q
(,0°) is 5 with Pr[Qg] = 1 such that Yo € Q,
_ 1 (x— ﬂ) W (t,w) is continuous with regard to ¢.
fN(y,Uz)(x) = € P
oV2n 20

We use ©(-) to denote the CDF of N(0,1), namely ®(t) = f_too fno,1)(x)dx.

In the following, we use f;(x) to denote the probability density of
N(0,t). For any t; <t, <...t,, the joint density of W(t;), W(t;),..., W(t,)
is

flxr,ex,) = ftl (x1 )ftz—tl (x2— 9C1)-~-ft,,—t,,_1 (% = Xp-1)

Example 1. Let 0 < s < t. We can compute the conditional distribution
of X(s) when X(t) =y. We use fy;(x|y) to denote the probability density of
X(s) = x conditioned X (t) = y. Clearly

@) fes=x) (x—ys/t)?
fi(®) =¢ eXP( 2s(t—s)/t)’

where C is some universal constant irrelevant to x,v,s,t. As a result, the

fo(xly) =

conditional distribution is the Gaussian N (3, (t —s)).

Let {W(t)},5( be a a standard Brownian motion. If {X(t)};,, satisfies
X(t) = p-t+oW(t), we call {X(t)},5a (4, 0%) Brownian motion. Clearly,
X(t) ~ N(ut,0?t).

2 The Hitting Time of a Brownian Motion

We consider the first arrivial time of position b in a Brownian motion.
This is called the hitting time of b. Let us first consider the standard
Brownian motion {W(t)}. Define 1, = inf{t > 0| W(t) > b}. For any
t>0,

Pr(t, <t]=Pr[t, <t AW(t)>b]+Pr[t, <t A W(t) <b]
=Pr[W(t)>b]+Pr[W(t)<b| T, <t]-Pr[t, <t].

Note that W(t) ~ NV(0,t). Let ® be the cumulative distribution func-

2
tion of standard Gaussian distribution, that is, ®(x) = \/%Tz ono ez dt.

Then W(t) b b
t
PI‘[W(t) > b] —PT[T > $:| =1 _q)(ﬁ)

This is called the principle of reflection of
a standard Brownian motion.
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Assuming we have known the value of 7, and 71, < ¢, we can regard
{W(t)};5,, as a Brownian motion starting from b. Thus, as Figure 1
shows, Pr(W(t)<b |1, <t]= %

By direct calculation, we have Pr[t, <t]= 2(1 -0 (L))

Figure 1: The hitting time and
the reflection principle

It is more challenging to find the hitting time of a (y,0?) Brownian
motion. The main difficulty is that the principle of reflection no long
holds when a nonzero drift y is present.

We can overcome the difficulty by leveraging the following useful
lemma.

Lemma 2. Let Yy,...,Y, bei.id. N(G,v2) random variables. Then the
distribution of (Yy,...,Y,) conditioned on ) ' | Y; =y is irrelevant to 6.

Proof. Let X = ) I, Y;. We use fy, _y, |x to denote the density of
Yi,..., Y, conditioned on X. Then

le,...,Yn,X(})I: e Y X)

le ,,,,, Y,,|X(}’1~--;ynxx):

fx(x)
1
_ Sy, Y, D15 Yno1, X — YY)
fx(x)
(=X 9i-0)* \ yn-1 (yi-0)>
exp(__zh2 nLexp _127
exp[— (x—n0)2
p 2nv?
A direct calculation shows that all terms on 6 cancel and therefore Here A ~ Bmeans A = ¢ - B for some
the lemma is proved 0 universal constant c.

The following corollary is immediate since all relevant random
variables can be expressed as the sum of independent Gaussians.

Corollary 3. Let {X(t)};5 bea (4, 0%) Brownian motion. Conditioned on
X(t) =x, for any t; <t,...t, <t, the joint distribution of (X(t1), X(t,),..., X(t,))
is the same for all p.

Armed with this, we can calculate the hitting time of a (, o?) Brow-
nian motion.
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Lemma 4. Let X(t) be a (u, 0%) Brownian motion. For anyy > x,
_ )
Pr[ry <t ( X(t)=x|=e w2 .

Proof. Applying Corollary 3, we know that Pr [Ty <t ' X(t ] =

Pr[’cy’ <t ( X'(t) = x] where X’(t) is a N(0,0?) Brownian motion and T,

is the hitting time X’(¢). It is not completely rigorous here since
Consider an infinitesimal change dx. It holds that Corollary 3 only applies to the joint

distribution of finite many random

variables. Nevertheless, it is conceivable
Pr[ Ty <tAX'(t)exx+ dx]] that the same holds for the whole
Pr[’f' <t|X'(t)e[xx+ dx]] = . rocess X(t)
y Pr[X’(t) e[x+dx]] P :

Since Pr[X'(t) € [x +dx]] = fx/(+)(x)dx, we only need to calculate the
numerator. Note that

Pr[ <tAX'( e[x,x+dx]] Pr[r <t]-Pr[X’(t)€[x,x+dx]|T;St].

Applying the principle of reflection, the above is equal to

PI'[T;} < t]-Pr[X’(t) €2y —x—dx, 2y —x] | T’y <t] :Pr[X’(t) €[2y-x-dx2y-x]AT, < t]
=Pr[X'(t) € [2y —x—dx, 2y — x]]
= fx/(1(2y —x)dx

The second equality is due to that dx is infinitesimal and therefore
x+dx <y. As a result, we have

_ ] _ fX’ 2}) X _ZVt(}/;X)

= T T —e to

Pr[TySt|X

We are now ready to compute the hitting time 7,. Wheny < x,
clearly Pr[’[y <t | X(t) = y] = 1. Therefore,

(oo

Pr[’cy < t] = Pr[’cy <t ) X(t)= x] “fxp(x)dx
J—0c0
Yy
= | Prl[r, <t|X(0)=x] fx(y(x)dx+Pr[X(1) 2 ]
J—0o0
(Y _ 2y 1 _e=pn? ( (3/ Vt))
= e t? .——-—p 202 dx+|1-D
J-co V2nt02 oVt

S (1)) o102
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