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1 Coupon Collector Problem with Non-Uniform Coupons

Recall the coupon collector problem we met many times in this course: If
each box of a brand of cereals contains a coupon which is chosen from 𝑛

different types uniformly at random, then we need to buy 𝑛𝐻𝑛 boxes in
expectation to collect all types of coupons.

In this lecture, we generalize the setting by allowing the non-uniformity.
Suppose that each purchase yields a coupon of type 𝑗 w.p. 𝑝 𝑗 for 𝑗 ∈ [𝑛]
and the coupon types contained in different boxes are independent, where∑𝑛

𝑗=1 𝑝 𝑗 = 1. Let 𝑁 𝑗 be the first time that we get type 𝑗 . Then 𝑁 𝑗 follows
the geometric distribution with parameter 𝑝 𝑗 . Let 𝑁 be the number of pur-
chases until all 𝑛 types of coupons are collected, that is, 𝑁 = max𝑗∈[𝑛] 𝑁 𝑗 .
We would like to compute E [𝑁 ] to see how many times of purchases is
needed in expectation. However, it is not easy to compute the expected
value of max𝑗∈[𝑛] 𝑁 𝑗 since 𝑁 𝑗 ’s are not independent.

1.1 Coupon Collector Problem with Poisson Draw

We consider a variation of the coupon collector problem where the coupons
are collected with Poisson draw. That is, each arrival of the Poisson process
with rate 1 brings a coupon and the probability of the coupon being of type
𝑗 is 𝑝 𝑗 . Note that this process is different from the ordinary coupon collector
problem since the arrival time is random.

Recall the thinning of Poisson process we discussed in the last lecture.
Let 𝑋 𝑗 (𝑡) be the number of type 𝑗 coupons we collect in time [0, 𝑡] with
Poisson draw. Then

{
𝑋 𝑗 (𝑡)

}
is a thinning of the process, meaning that{

𝑋 𝑗 (𝑡)
}
is a Poisson process with rate 𝑝 𝑗 and 𝑋 𝑗 (𝑡) is independent of 𝑋𝑖 (𝑡)

for 𝑖 ≠ 𝑗 . For 𝑗 ∈ [𝑛], let 𝑇𝑗 ≜ min
{
𝑡
�� 𝑋 𝑗 (𝑡) = 1

}
be the first time that type

𝑗 coupon appears. Obviously, 𝑇𝑗 is the same as 𝜏 𝑗 (1) 1 and 𝑇𝑗 ∼ Exp(𝑝 𝑗 ). 1 Here 𝜏 𝑗 (1) denotes the time gap between
the arrival of the customers with coupon 𝑗 .To determine the time of collecting all kinds of coupons, we need to

compute E [𝑇 ] where 𝑇 = max𝑗∈[𝑛] 𝑇𝑗 . The following proposition to com-
pute expectation is useful.

Proposition 1 Let 𝑋 be a non-negative random variable.

• If 𝑋 is discrete and 𝑋 ∈ ℕ, then E [𝑋 ] = ∑∞
𝑡=1 Pr [𝑋 ≥ 𝑡].

• If 𝑋 is continuous, then E [𝑋 ] =
∫ ∞
0 Pr [𝑋 ≥ 𝑡] 𝑑𝑡 .

Proof.
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• When 𝑋 is discrete, we apply the double counting trick:

E [𝑋 ] =
∞∑
𝑠=1

𝑠Pr [𝑋 = 𝑠] =
∞∑
𝑠=1

𝑠∑
𝑡=1

Pr [𝑋 = 𝑠]

=
∞∑
𝑡=1

∞∑
𝑠=𝑡

Pr [𝑋 = 𝑠] =
∞∑
𝑡=1

Pr [𝑋 ≥ 𝑡] .

• When 𝑋 is continuous,

E [𝑋 ] = E
[∫ 𝑋

0
1𝑑𝑡

]
= E

[∫ ∞

0
1[𝑋 ≥ 𝑡] 𝑑𝑡

]
(♡)
=

∫ ∞

0
E [1[𝑋 ≥ 𝑡]] 𝑑𝑡 =

∫ ∞

0
Pr [𝑋 ≥ 𝑡] 𝑑𝑡,

where (♡) comes from the Fubini’s theorem.

□
Note that for any 𝑡 ∈ ℝ≥0,

Pr [𝑇 ≥ 𝑡] = 1 − Pr [𝑇 < 𝑡] = 1 −
𝑛∏
𝑗=1

Pr
[
𝑇𝑗 < 𝑡

]
= 1 −

𝑛∏
𝑗=1

(
1 − 𝑒−𝑝 𝑗 𝑡

)
.

By the continuous version of Proposition 1, we have

E [𝑇 ] =
∫ ∞

0
Pr [𝑇 ≥ 𝑡] 𝑑𝑡 =

∫ ∞

0
1 −

𝑛∏
𝑗=1

(
1 − 𝑒−𝑝 𝑗 𝑡

)
𝑑𝑡 .

That is, we need a time of
∫ ∞
0

(
1 − 𝑒−𝑝 𝑗 𝑡

)
𝑑𝑡 in expectation to collect all

kinds of coupons.

1.2 Standard Coupon Collector Problem

Then we relate the result we obtained in the previous section on the coupon
collector with Poisson draw to the standard coupon collector problem by
the technique of coupling. Specifically, let 𝜏𝑖 denote the time gap between
the 𝑖 − 1-th and the 𝑖-th arrival. Imagine the standard version as one cus-
tomer coming with a coupon in hand with constant time gap between
arrivals. We couple the two process by letting the 𝑖-th arrival in the Poisson
version carry the same type of coupon with the 𝑖-th arrival in the ordinary
version.

Recall that 𝑁 is the number of purchases until all 𝑛 types of coupons
are collected in the standard coupon collector problem. Then we have
𝑇 =

∑𝑁
𝑖=1 𝜏𝑖 . Note that 𝜏𝑖 ∼ Exp(1) and E [𝜏𝑖 ] = 1. If 𝑁 is a constant, we

can deduce E [𝑁 ] = E
[∑𝑁

𝑖=1 𝜏𝑖
]
= E [𝑇 ] directly. However, 𝑁 is a random

variable and thus the summation and expectation are not guaranteed to be
exchangeable. To show the validity of E [𝑁 ] E [𝜏𝑖 ] = E

[∑𝑁
𝑖=1 𝜏𝑖

]
in this case,

we make use of the Wald’s equation introduced before.
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Theorem 2 (Wald’s Equation) Let 𝑋1, 𝑋2, . . . be 𝑛 i.i.d. random variables
that E [|𝑋1 |] < ∞. Let 𝑇 be a stopping time that E [𝑇 ] < ∞. Then we have
E
[∑𝑇

𝑡=1𝑋𝑡

]
= E [𝑇 ] E [𝑋1].

It is easy to verify that E [𝜏𝑖 ] = 1 < ∞ and E [𝑁 ] < ∞ in our case.
So applying the Wald’s equation, we have E [𝑁 ] E [𝜏𝑖 ] = E

[∑𝑁
𝑖=1 𝜏𝑖

]
and

sequentially

E [𝑁 ] = E [𝑇 ] =
∫ ∞

0
1 −

𝑛∏
𝑗=1

(
1 − 𝑒−𝑝 𝑗 𝑡

)
𝑑𝑡 . (1)

Then we go back to the coupon collector problem with uniform coupons
for sanity check. Let 𝑥 = 𝑒−

𝑡
𝑛 . If 𝑝 𝑗 = 1

𝑛 for any 𝑗 ∈ [𝑛], we have

E [𝑁 ] =
∫ ∞

0
1 −

𝑛∏
𝑗=1

(
1 − 𝑒−𝑝 𝑗 𝑡

)
𝑑𝑡

= 𝑛

∫ ∞

0
1 − (1 − 𝑥)𝑛 𝑑 log𝑥

= 𝑛

∫ ∞

0

1
𝑥
− (1 − 𝑥)𝑛

𝑥
𝑑𝑥

= 𝑛

∫ ∞

0

𝑛∑
𝑘=1

(1 − 𝑥)𝑘−1
𝑥

− (1 − 𝑥)𝑘
𝑥

𝑑𝑥

(♡)
= 𝑛

𝑛∑
𝑘=1

∫ ∞

0
(1 − 𝑥)𝑘−1𝑑𝑥

= 𝑛
𝑛∑

𝑘=1

1
𝑘
= 𝑛𝐻𝑛,

where the (♡) follows from the Fubini’s theorem. This verifies Equation (1)
when the types of coupons are uniform.

2 Balls-into-Bins

Recall the balls-into-bins problem where we throw𝑚 identical balls into
𝑛 bins. For 𝑖 ∈ [𝑛], let 𝑋𝑖 be the number of balls in the 𝑖-th bin. Then
we have 𝑋𝑖 ∼ Binom(𝑚, 1𝑛 ) and E [𝑋𝑖 ] = 𝑚

𝑛 . This model can be used to
describe the scheme of the hash table. To avoid frequent collision when
mapping the keys into slots, it is natural for us to be concerned about the
value of max𝑖∈[𝑛] 𝑋𝑖 . However, we are faced with the difficulty that 𝑋𝑖 ’s are
not independent when computing the distribution of max𝑖∈[𝑛] 𝑋𝑖 . It turns
out that one can use independent Poisson variables to approximate the
distribution. First we have:

Theorem 3 The distribution of (𝑋1, 𝑋2, . . . , 𝑋𝑛) is the same as that of (𝑌1, 𝑌2, . . . , 𝑌𝑛)
on condition that

∑𝑛
𝑖=1 𝑌𝑖 = 𝑚 where 𝑌𝑖 ∼ Pois(𝜆) are independent Poisson

random variables with an arbitrary rate 𝜆.
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Proof. Given (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ ℕ𝑛 and
∑𝑛

𝑖=1 𝑎𝑛 =𝑚, we have

Pr [(𝑋1, 𝑋2, . . . , 𝑋𝑛) = (𝑎1, 𝑎2, . . . , 𝑎𝑛)] =
1
𝑛𝑚

· 𝑚!
𝑎1!𝑎2! · · ·𝑎𝑛!

. (2)

And

Pr

[
(𝑌1, 𝑌2, . . . , 𝑌𝑛) = (𝑎1, 𝑎2, . . . , 𝑎𝑛)

����� 𝑛∑
𝑖=1

𝑌𝑖 =𝑚

]
=
Pr

[
(𝑌1, 𝑌2, . . . , 𝑌𝑛) = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∧

∑𝑛
𝑖=1 𝑌𝑖 =𝑚

]
Pr

[∑𝑛
𝑖=1 𝑌𝑖 =𝑚

]
=

∏𝑛
𝑖=1 Pr [𝑌𝑖 = 𝑎𝑖 ]

Pr
[∑𝑛

𝑖=1 𝑌𝑖 =𝑚
]

=

∏𝑛
𝑖=1 𝑒

−𝜆 𝜆𝑎𝑖
𝑎𝑖 !

𝑒−𝜆𝑛 (𝜆𝑛)𝑚
𝑚!

=
1
𝑛𝑚

· 𝑚!
𝑎1!𝑎2! · · ·𝑎𝑛!

,

which equals to the RHS of Equation (2). □
Furthermore, we can deduce the following corollary from Theorem 3.

Corollary 4 Let 𝑓 : ℕ𝑛 → ℕ be an arbitrary function and 𝑌1, 𝑌2, . . . , 𝑌𝑛 be 𝑛
independent Poisson random variables with rate 𝜆 = 𝑚

𝑛 . Then we have

E [𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑛)] ≤ 𝑒
√
𝑚 · E [𝑓 (𝑌1, 𝑌2, . . . , 𝑌𝑛)] .

Proof. By the law of total probability, we have

E [𝑓 (𝑌1, 𝑌2, . . . , 𝑌𝑛)] =
∞∑
𝑘=0

E

[
𝑓 (𝑌1, 𝑌2, . . . , 𝑌𝑛)

����� 𝑛∑
𝑖=1

𝑌𝑖 = 𝑘

]
Pr

[
𝑛∑
𝑖=1

𝑌𝑖 = 𝑘

]
≥ E

[
𝑓 (𝑌1, 𝑌2, . . . , 𝑌𝑛)

����� 𝑛∑
𝑖=1

𝑌𝑖 =𝑚

]
Pr

[
𝑛∑
𝑖=1

𝑌𝑖 =𝑚

]
= E [𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑛)] Pr

[
𝑛∑
𝑖=1

𝑌𝑖 =𝑚

]
.

Note that
∑𝑛

𝑖=1 𝑌𝑖 ∼ Pois(𝑚), then we have

Pr

[
𝑛∑
𝑖=1

𝑌𝑖 =𝑚

]
= 𝑒−𝑚

𝑚𝑚

𝑚!
>

1
𝑒
√
𝑚
,

where the inequality comes from the Stirling’s formula. □ We can see from the proof of Corollary 4
that the choice of 𝜆 = 𝑚

𝑛 is to maximize
Pr

[∑𝑛
𝑖=1 𝑌𝑖 =𝑚

]
.

Equipped with Corollary 4, we have the following theorem to bound
𝑋 = max𝑖∈[𝑛] 𝑋𝑖 .

Theorem 5 (Max Load) When𝑚 = 𝑛, we have 𝑋 = Θ
(

log𝑛
log log𝑛

)
w.p. 1 − 𝑜 (1).

Proof. First we prove the upper bound, that is, there exists a constant 𝑐1
such that Pr

[
𝑋 ≥ 𝑐1 log𝑛

log log𝑛

]
= 𝑜 (1). Let 𝑘 = 𝑐1 log𝑛

log log𝑛 for brevity. By union
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bound, we have

Pr [𝑋 ≥ 𝑘] = Pr [∃𝑖 ∈ [𝑛], 𝑋𝑖 ≥ 𝑘] ≤
𝑛∑
𝑖=1

Pr [𝑋𝑖 ≥ 𝑘]

= 𝑛 · Pr [𝑋1 ≥ 𝑘] ≤ 𝑛 ·
(𝑛
𝑘

) 1
𝑛𝑘

≤ 𝑛 ·
(𝑒𝑛
𝑘

)𝑘 1
𝑛𝑘

= 𝑛 ·
( 𝑒
𝑘

)𝑘
.

Note that

𝑘 log𝑘 =
𝑐1 log𝑛
log log𝑛

· (log log𝑛 − log log log𝑛 + log 𝑐1)

> 𝑐1 log𝑛
(
1 − log log log𝑛

log log𝑛

)
>

𝑐1
2
log𝑛.

Letting 𝑐 = 6, we have that

log𝑛 + 𝑘 − 𝑘 log𝑘 < − log𝑛.

Thus, Pr [𝑋 ≥ 𝑘] ≤ 𝑛 ·
( 𝑒
𝑘

)𝑘
< 1

𝑛 = 𝑜 (1) for 𝑐1 = 6.
Then we prove the lower bound. Again let 𝑔 = 𝑐2 log𝑛

log log𝑛 for a constant
𝑐2. Let 𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑛) ≜ 1[𝑋 < 𝑔] = 1[max𝑖∈[𝑛] 𝑋𝑖 < 𝑔]. Then by
Corollary 4,

Pr [𝑋 < 𝑔] = E [𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑛)]
≤ 𝑒

√
𝑛 · E [𝑓 (𝑌1, 𝑌2, . . . , 𝑌𝑛)]

= 𝑒
√
𝑛 · Pr

[
max
𝑖∈[𝑛]

𝑌𝑖 < 𝑔

]
. (3)

By the definition of 𝑌𝑖 in Corollary 4, we have

Pr
[
max
𝑖∈[𝑛]

𝑌𝑖 < 𝑔

]
= (Pr [𝑌1 ≤ 𝑔])𝑛 = (1 − Pr [𝑌1 > 𝑔])𝑛

≤ (1 − Pr [𝑌1 = 𝑔 + 1])𝑛 =

(
1 − 1

(𝑔 + 1)!𝑒

)𝑛
≤ 𝑒−

𝑛
(𝑔+1) !𝑒

Note that

log(𝑔 + 1)! =
𝑔+1∑
𝑖=1

log 𝑖 <
∫ 𝑔+2

1
log𝑥 𝑑𝑥

= (𝑔 + 2) log(𝑔 + 2) − 𝑔 − 1 ≤ (𝑔 + 2) log𝑔 − 𝑔 + 3

=
𝑐2 log𝑛 + 2 log log𝑛

log log𝑛
(log log𝑛 − log log log𝑛 + log 𝑐2) −

𝑐2 log𝑛
log log𝑛

+ 3

≤ 𝑐2 log𝑛 − log log𝑛 − 2.

Letting 𝑐2 = 1, we have log(𝑔 + 1)! ≤ log𝑛 − log log𝑛 − 2 and sequentially

𝑒 (𝑔 + 1)! ≤ 𝑛

𝑒 log𝑛
.

Thus,

Pr
[
max
𝑖∈[𝑛]

𝑌𝑖 < 𝑔

]
≤ 𝑒−

𝑛
(𝑔+1) !𝑒 ≤ 𝑒−𝑒 log𝑛 = 𝑛−𝑒 .

Combining with Equation (3), we have Pr
[
𝑋 <

log𝑛
log log𝑛

]
≤ 𝑒

√
𝑛 · 𝑛−𝑒 = 𝑜 (1).

□
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