
[AI2613 Lecture 1] Review of Probability Theory
February 24, 2023

1 Probability Space

We start with the notion of probability space. A standard reference for
the probability theory is [1].

Definition 1 (Probability Space). A probability space is a tuple
(Ω,F ,P(·)) satisfying the following requirements.

• The universe Ω is a set of “outcomes” (which can be either countable or
uncountable).

• The set F ⊆ 2Ω is a σ -algebra (the set of all possible “events”). Here we
say F is a σ -algebra if F satisfies:

– ∅,Ω ∈ F ;

– ∀A ∈ F , it holds Ac ∈ F ; Ac := Ω \A.

– for any finite or countable sequence of sets A1, . . . ,An, · · · ∈ F , it holds
that

⋃∞
i=1Ai ∈ F .

• The probability function P(·) : F → [0,1] satisfies

– P(∅) = 0, P(Ω) = 1;

– P(Ac) = 1− P(A) for all A ∈ F ;

– for any finite or countable sequence of disjoint sets A1, . . . ,An, · · · ∈
F , it holds that P

(⋃∞
i=1Ai

)
=

∑∞
i=1 P(Ai).

Let S ⊆ 2Ω. We use σ (S) to denote the minimal σ -algebra contain-
ing sets in S . That is, for any F ⊆ 2Ω, F = σ (S) if and only if (1) F is a The term “minimal” here is with respect

to the set inclusion relation ⊆.σ -algebra; (2) S ⊆ F ; (3) For any F ′ ⊆ F such that S ⊆ F ′ , F ′ is not a
σ -algebra. For every n ∈�, we use [n] to denote the

set {1,2, . . . ,n}.
Example 1 (Tossing n fair coins). Let Ω = {0,1}n ,F = 2Ω and for every
S ∈ {0,1}n, P ({S}) = 1

2n .
The definition here, although a bit
wired at the first glance, is in fact the
simplest way to capture our intuition
that the probability that a point is in
(a,b) should be b − a. We cannot take
F = 2Ω in Example 2 as doing so may
include some non-measurable sets. In
fact, F is called the Borel algebra, which
is the smallest σ -algebra containing
all open intervals. One can construct
a non-Borel set in (0,1) assuming the
axiom of choice. In fact, the existence
of a non-Borel set is independent of
Zermelo-Fraenkel set theory without the
axiom of choice. We useR to denote
the collection of Borel sets on �. For any
A ⊆�, we useR(A) to denoteR ∩ 2A.

Example 2 (Uniform Reals in (0,1)). The uniform distribution on (0,1)
is defined as follows:

• Ω = (0,1);

• F is the σ -algebra consisiting of all Borel sets on (0,1), namely the
collection of subsets of (0,1) obtained from open intervals by repeatedly
taking countable unions and complements;

• ∀ interval I = (a,b), P (I) = b − a (This is the Lebesgue measure).

https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory
https://en.wikipedia.org/wiki/Borel_set
https://en.wikipedia.org/wiki/Lebesgue_measure
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2 Random Variables

Definition 2 (Measurable Space). Consider a set Ω and a σ -algebra F
on Ω. The tuple (Ω,F ) is called a measurable space.

Definition 3 (Measurable Function). Let (Ω,F ) and (Ω′ ,F ′) be two
measurable spaces and X : Ω → Ω′ be a function. We say X is a F -
measurable function if

∀B′ ∈ F ′ , X−1(B′) ∈ F ,

X−1(B′) ≜
{
ω ∈Ω|X(ω) ∈ B′

}
is the

inverse of X.
For any function, we use σ (X) to denote the minimal σ -algebra F

such that X is F -measurable.

Definition 4 (Random Variable). . Let Ω′ and F ′ in Definition 3 be �
and the Borel algebraB , then X in Definition 3 is a (real-valued) random
variable.

We say a random variable X discrete if its range Ran(X) is count-
able. In other words, X can only take at most countable many distinct
values. Otherwise, we say X is a continuous random variable. The measurability of a random variable

X captures the intuition that we can
safely talk about the probability of X
taking some value. Intuitively X induces
a partition of Ω where two outcomes ω1
and ω2 are in the same partition if and
only if X(ω1) = X(ω2). If the partition
defined by X is more “coaser” than the
partition defined by a σ -algebra F , then
X is F measurable.

Example 3 (Measurable Functions of Tossing a Dice). . Let Ω = [6].
We have three σ -algebras on Ω: F1 = 2[6], F2 = σ ({1,3,5}) and F3 =
σ ({1,2}). Consider three random variables X1,X2,X3 : Ω→ � such that
X1 : ω 7→ ω, X2 : ω 7→ ω mod 2 and X3 : ω 7→ 1[ω ≤ 2]. Then all these
three mappings are F1-measurable, only X2 is F2-measurable and only X3

is F3-measurable.

3 Distribution

Let (Ω,F ,P) be a probability space and X : Ω→ � be a F -measurable
random variable. LetB be the Borel algebra on �. The distribution
space (�,B ,Pr) induced by X is defined as

∀A ∈B ,Pr [A] = Pr [X ∈ A] ≜ P[X−1(A)].

The function F(x) := Pr [X ≤ x] = P(X−1(−∞,x)) is called the cumula-
tive distribution function (cdf) of X.

If a function f : �→� satisfies for any a ≤ b:∫ b

a
f (x) dx = F(b)−F(a),

then we call f (x) a probability density function (pdf) of X.

Example 4 (Exponential Distribution). If X ∼ Exp(λ), or equivalently it
follows exponential distribution with rate λ for λ > 0, then its pdf is

f (x) =

λe−λx, x > 0

0, otherwise.
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4 Expectation and Variance

Definition 5 (Expectation). . Let (Ω,F ,P) be a probability space and
X : Ω→� be a random variable.

• For a discrete random variable X, its expectation is

E [X] :=
∑

a∈Ran(X)

a ·Pr [X = a] .

If Ω is at most countable, we can also write

E [X] =
∑
ω∈Ω

P({ω}) ·X(ω).

• For a continuous random variable X with pdf f , its expectation is

E [X] :=
∫ ∞
−∞

t · f (t)dt.

Sometimes it is more convenient to equivalently write the expectation as

E [X] =
∫
Ω

X(ω)µ(dω) =
∫
Ω

Xdµ.

using Lebesgue integration.

Example 5 (Expectation of Exponential Distribution). Let X ∼ Exp(λ)
for λ > 0, then

E [X] =
∫ ∞

0
t ·λe−λt dt =

1
λ
.

Definition 6 (Variance). The variance of a random variable X is

Var [X] := E
[
(X −E [X])2

]
= E

[
X2

]
−E [X]2 .

Proposition 7. Let X1, . . . ,Xn be random variables where n is a finite
constant. Then

E

 n∑
i=1

Xi

 =
n∑
i=1

E [Xi] .

5 Conditional Probability
This is well-defined since we know
from the definition of σ -algebra that
A∩B ∈ F .

Definition 8 (Conditional Probability). Let (Ω,F ,P) be a probability
space. Let A,B ∈ F be two events with P(B) > 0. The conditional probabil-
ity of A given B is

P(A |B) :=
P(A∩B)
P(B)

.

In the following, we define the notion of conditional expectation for
those discrete random variables.

https://en.wikipedia.org/wiki/Lebesgue_integration
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Definition 9 (Conditional Expectation). Let (Ω,F ,P) be a probability
space. Let A ∈ F be an event with P(A) > 0. Let X : Ω→ � be a discrete
random variable. The conditional expectation of X conditioned on A is

E [X | A] :=
∑

a∈Ran(X)

a ·Pr [X = a | A] .

Let Y : Ω→ � be another discrete random variable. The conditional ex-
pectation of X conditioned on Y , written as E [X | Y ], is a random variable
fY : Ω→� such that

∀ω ∈Ω : fY (ω) = E
[
X

∣∣∣ Y −1(Y (ω))
]

= E [X | Y = Y (ω)] . (1)

Proposition 10.

• E [X | Y ] is σ (Y )-measurable.

• E [E [X | Y ]] = E [fY ] = E [X].

Proof. • Since the value of E [X | Y ] is determined by Y (ω), it is
clearly σ (Y )-measurable.

• We compute E [fY ] by definition.

E [fY ] =
∑

y∈Ran(Y )

Pr [Y = y] ·E [X
∣∣∣ Y = y]

=
∑

y∈Ran(Y )

Pr [Y = y] ·
∑

x∈Ran(X)

Pr [X = x
∣∣∣ Y = y] · x

=
∑

x∈Ran(X)

x ·
∑

y∈Ran(Y )

Pr [Y = y] ·Pr [X = x
∣∣∣ Y = y]

=
∑

x∈Ran(X)

x ·
∑

y∈Ran(Y )

Pr [X = x∧Y = y]

=
∑

x∈Ran(X)

x ·Pr [X = x]

= E [X] .

6 Conditional Expectation for General Random Variables

The definition of conditional expectation for continuous random
variables is more subtle. For example, if X,Y ∼ N (0,1) are two inde-
pendent random variables following standard normal distribution,
then intuitively E [X | Y = 0] should be identical to E [X], which is
zero. However, we cannot directly adopt the definition before since
Pr [Y = 0] = 0.
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Definition 11. Let (Ω,F ,P) be the probability space. Let X be a random
variable with E [|X |] <∞. The conditional expectation E [X | Y ] is a σ (Y )-
measurable random variable fY satisfying

∀A ∈ σ (Y ),
∫
A
fY dP =

∫
A
X dP .

The existence and uniqueness of fY follow from Radon-Nikodym
theorem.

7 Balls-into-Bins

Balls-into-bins is a simple random process in which a person throws
m balls into n bins uniformly at random. Many interesting questions
can be asked about the process.

7.1 Birthday Paradox

Birthday paradox refers to the seemly counter-intuitive fact that some
students in the class are very likely to share the same birthday. View-
ing bins as dates and balls as students, the event that two students
have the same birthday can be modeled as the event that some bin
contains more than one ball.

Note that each ball is thrown independently. Condition on there
is no collision after the k − 1 balls are thrown, the probability that no
collision occurs after throwing the kth ball is n−k+1

n . Hence,

Pr [no same birthday] =
m∏
k=1

n− k + 1
n

=
m−1∏
k=1

(
1− k

n

)

≤ exp

−
∑m−1

k=1 k

n

 (by 1 + x ≤ ex)

= exp
{
−m(m− 1)

2n

}
. (2)

For m = O(
√
n) , the probability can be arbitrarily close to 0. When n is sufficiently large, Equa-

tion (2) is tight because k
n ≤

m
n =

O( 1√
n

)→ 0 and 1 + x ≤ ex is tight when x

is small.
7.2 Coupon Collector

The coupon collector problem asks the following question: If each
box of a brand of cereals contains a coupon, randomly chosen from n

different types of coupons, what is the number of boxes one needs to
buy to collect all n coupons? In the language of balls-into-bins, it asks
how many balls one needs to throw until each of the n bins contains at
least one ball.

https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
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The expectation can be easily calculated using the linearity of ex-
pectations. Let Xi be the number of balls to throw to get the i-th dis-
tinct type of coupon while exactly i − 1 distinct types of coupons are
already in had. Then the number of draws X to collect all coupons
satisfies

X =
n−1∑
i=1

Xi .

By the linearity of expectations:

E [X] =
n∑
i=1

E [Xi] .

It is clear that Xi ∼ Gem(n−i+1
n ) and therefore E [Xi] = n

n−i+1 . As a result,

E [X] =
n∑
i=1

n
n− i + 1

= n ·H(n),

where H(n) is the harmonic number satisfying limn→∞H(n) = logn+γ

for γ = 0.577 . . . . γ is called the Euler constant.

8 Concentration Inequalities

In addition to the expectation, we are often interested in how a ran-
dom variable deviates from certain fixed value. Concentration in-
equalities are inequalities of this form.

8.1 Markov’s Inequality

Theorem 12 (Markov’s Inequality). . For any non-negative random
variable X and a > 0,

Pr [X ≥ a] ≤ E [X]
a

.

Proof. Since X is non-negative, we have

E [X] ≥ a ·Pr [X ≥ a] + 0 ·Pr [X < a] .

This is equivalent to

Pr [X ≥ a] ≤ E [X]
a

.

Example 6 (Concentration for Coupon Collector). . Recall that X is the
number of balls we need. Apply Markov’s inequality, for c > 0 we have

Pr [X ≥ c] ≤ E [X]
c

=
nHn

c
.

Thus, the probability that we need to draw the coupon for more than 100 ·
nHn times is less than 0.01.

https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
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8.2 Chebyshev’s Inequality

A common trick to improve concentration is to consider E [f (X)] in-
stead E [X] for some increasing function f : �→� since

Pr [X ≥ a] = Pr [f (X) ≥ f (a)] .

Concentration inequalities give a sense that how the random variable
deviate from its expectation. Then the probability we care about is
actually Pr [|X −E [X] | ≥ a] for some postive constant a. Choosing
the increasing function f (x) = x2, we get the following Chebyshev’s
inequality.

Theorem 13 (Chebyshev’s Inequality). . For any random variable with
bounded E [X] and a ≥ 0, it holds that

Pr [|X −E [X]| ≥ a] ≤ Var [X]
a2

Proof. Let Y = |X −E [X]|, then clearly Y ≥ 0. Therefore

Pr [|X −E [X]| ≥ a] = Pr [Y ≥ a] = Pr
[
Y 2 ≥ a2

]
≤

E
[
Y 2

]
a2

=
E
[
(X −E [X])2

]
a2 =

Var [X]
a2 .

Example 7 (Coupon Collector Revisited). We apply Chebyshev’s in-
equality to the coupon collector problem. Assuming the notation before, we
have

Pr [X ≥ nHn + t] ≤ Pr [|X −E [X]| ≥ t] ≤ Var [X]
t2 .

Recall that the variable Xi indicates the number of draws to get a new
coupon while there are i coupons in hands. For distinct i and j, Xi and Xj

are independent. Then

Var [X] = Var

n−1∑
i=0

Xi

 =
n−1∑
i=0

Var [Xi] .

For i ∈ {0,1, . . . ,n− 1}, Xi ∼ Geom
(
n−i
n

)
, so we have

Var [Xi] =
1− n−i

n(
n−i
n

)2 =
i ·n

(n− i)2 ≤
n2

(n− i)2 .

It remains to bound
∑n−1

i=0
1

(n−i)2 =
∑n

i=1
1
i2

. Note that

n∑
i=1

1
i2
≤ 1 +

∫ ∞
1

dx
x2 = 2.

Therefore, we have Var [X] ≤ 2n2 and Pr [X ≥ nHn + t] ≤ 2n2

t2 . The proba-
bility that we need to draw the coupon for more than

√
200n+nHn times is

less than 0.01. The bound obtained by Chebyshev’s
inequality is much tighter than that via
Markov’s inequality where in order to
obtain the same confidence, one needs
to choose t = Θ(n logn).
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