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1 Review of Poisson Approximation

Review the model of balls-into-bins. This model can capture many important problems, such as
the birthday paradox, the coupon collector problem. Specifically, suppose that we have m balls
and put them into n bins independently and uniformly at random. Let Xi be the number of balls
into the i -th bin. Then we are interested in the distribution of (X1, . . . , Xn). The following result
shows that the distribution of (X1, . . . , Xn) is exactly the same as independent Poisson variables
conditioned on the summation.

Theorem 1. The distribution of (X1, . . . , Xn) is the same as the distribution of (Y1, . . . ,Yn) conditioned

on
∑n

i=1 Yi = m, where Yi ∼ Pois(λ) are independent Poisson random variables with an arbitrary rate

λ.

Moreover, in the last lecture we proved the following corollary, which transform the expectation
of dependent binomial random variables to the expectation of independent Poissons without any
conditioning, and we also used it to analyze the maxload problem.

Corollary 2. Let f : Nn →N be an arbitrary function, Y1,Y2, . . . ,Yn be n independent Poisson ran-

dom variables with rate λ= m/n, i.e., Yi ∼ Pois(m/n). Then we have

E
[

f (X1, X2, . . . , Xn)
]≤ e

p
m ·E[

f (Y1,Y2, . . . ,Yn)
]

.

Remark. If f is a monotone function, then the factor e can be improved to 2.

Remark. When we apply this corollary, we usually let f be an indicator function of some bad
event B(X1, . . . , Xn). Then

Pr[B(X1, . . . , Xn)] = E
[

f (X1, . . . , Xn)
]≤ e

p
m ·E[

f (Y1, . . . ,Yn)
]= Pr[B(Y1, . . . ,Yn)] .

For example, see our proof of the maxload problem in the last lecture.
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Theorem 3 (Maxload). Assume that m = n in the balls-into-bins model, and let X = max Xi . Then

there exists two constant c1,c2 > 0 such that

Pr
[

c1 · logn

loglogn
< X < c2 · logn

loglogn

]
= 1−o(1/n) .

In the last lecture, we showed that there exists two constant c1,c2 > 0 such that

Pr
[

X ≤ c1 · logn

loglogn

]
= o(1/n) ,

and
Pr

[
X ≥ c2 · logn

loglogn

]
= o(1/n) .

The remaining part of the last lecture is to prove Theorem 1. Here we give a proof.

Proof of Theorem 1. We first give the distribution of (X1, . . . , Xn). Note that the number of all
possible ways to put balls into bins is nm , and the number of the permutations of a multi-set of
a1 Z1s, a2 Z2s, . . ., and an Zns is(

a1 +a2 +·· ·+an

a1, a2, . . . , an

)
≜ (a1 +a2 +·· ·+an)!

a1!a2! · · ·an !
.

Hence for all a1, a2, . . . , an ∈N s.t. ∑ai = m, we have

Pr[X1 = a1, X2 = a2, . . . , Xn = an] = 1

nm
· m!

a1!a2! · · ·an !
.

Next, we show that (Y1, . . . ,Yn) has the same distribution.

Pr
[
Y1 = a1,Y2 = a2, . . . ,Yn = an |∑Yi = m

]= Pr[Y1 = a1,Y2 = a2, . . . ,Yn = an]

Pr[
∑

Yi = m]

=
∏n

i=1Pr[Yi = ai ]

Pr[
∑

Yi = m]

=
∏n

i=1 e−λ · λai

ai !

e−nλ · (nλ)m

m!

= 1

nm
· m!

a1!a2! · · ·an !
.

2 Non-Homogeneous Poisson Process

We introduced the transformation of conditioning and proved the following result in the last
lecture. The next part of today’s lecture will be based on it.
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Theorem 4. Conditioned on N (t ) = n, the vector of arrival times (T1,T2, . . . ,Tn) has the same distri-

bution as (V1,V2, . . . ,Vn), where V1,V2, . . . ,Vn are sampled independently and uniformly at random

from [0, t ] and then rearranged in the increasing order.

Recall the thinning of the Poisson process. A thinning requires that the randon variables Yi

associated to arrivals are independent and identically distributed. Let pj denote the probability
that Yi = j . Then we have ∑

j pj = 1 and N j (t ) ∼ Pois(pjλt ). Now the question is, what is N j (t )

if p j are not constants?
Then N j (t ) may not be Poisson processes any longer. However, if we view N j (t ) as random
variables, then we have the following theorem.

Theorem 5. Let Yi ∈ {1,2, . . . ,k} be random variables and p1, . . . , pk are nonnegative functions such

that
∑k

j=1 pj = 1 (namely, ∀ s,
∑k

j=1 pj (s) = 1). Assume that Pr
[
Yi = j

]= pj (s) if the i -th arrival is

at time s. Then the number of arrivals with Yi = j before time t , denoted by N j (t ), are independent

Poisson distributed with mean

E
[
N j (t )

]=λ

∫ t

0
pj (s)ds .

Example 1 (Queueing Theory (M/G/∞ Poisson Queue)). M/G/∞ is a term in queueing theory.
Here we give a brief explanation. The first character “M” stands forMarkovian (lack of memory),
which means that customers arrive as a Poisson process with rate λ. The second one, “G”, stands
for general service times, that is, we assume that the i -th customer requires some service time si ,
where si are independent and have a cumulative distribution G (i.e., G(t ) = Pr[service time≤ t ]).
The final symbol “∞” indicates there are infinite many servers.
Then we are interested in the distributions of the following two random variables:

1. X (t ) : the number of customers completed services before time t ;

2. Y (t ) : the number of customers being served at time t .

We partition customers arrive before time t into two types:

Type 1. Customers have completed services before time t . The number is X (t ).

Type 2. Customers are being served at time t . The number is Y (t ).

Note that the number of servers are infinite. So the type of customers arrived are determined by
the distribution G . Let pi (s) be the probability of the customer arrived at time t to be type i . It is
easy to see that

p1(s) =G(t − s) , and

p2(s) = 1−G(t − s) .
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To simplify our statement, let G(t ) = 1−G(t ). Then we have

E[X (t )] = E[N1(t )] =λ

∫ t

0
G(t − s)ds =λ

∫ t

0
G(r )dr , and

E[Y (t )] = E[N2(t )] =λ

∫ t

0
G(t − s)ds =λ

∫ t

0
G(r )dr .

Example 2. Suppose someone drives a car C through a road of length ℓ at speed x. We also
assume that there are other cars entering into this section of road according to a Poisson process
with rate λ, and all vehicles are travelling at a constant speed with distribution G . A car can
overtake a slower moving car without any loss of speed. Our goal is to choose x to minimize the
number of overtakes (including overtaking and being overtaken).
Given x, the time of car C passing the road is t0 = ℓ/x. If the car enter the section of road
at time s, then it is on the road in time period [s, s + t0]. Suppose there is another car coming
into the road at a random time S. Its speed X is sampled from the distribution with cumulative
distribution function G . Then the passing time is T = ℓ/X . Let F be the distribution of T , that is,
F (t ) = Pr[T < t ] = Pr[X > ℓ/t ] =G(ℓ/t ).
We consider the following two types of cars:

Type 1: cars overtaking C. Then type-1 cars enter the road at time t > s and exit at time t+T < s+t0.

Type 2: cars overtaken by C. Then type-2 cars enter the road at time t < s and exit at time t +T >
s + t0.

Let p(t ) be the probability that a car arriving at time t encouters car C (overtaking or being
overtaken) on the road. Then we have

p(t ) =

Pr[t +T > s + t0] = Pr[T > s + t0 − t ] = F (s + t0 − t ), if t < s ;

Pr[t +T < s + t0] = Pr[T < s + t0 − t ] = F (s + t0 − t ), if s < t .

Remark. To simplify our statement, we assume that F is defined over R and F (t ) = 0 if t ≤ 0.

Hence, we conclude that

E[Nencounter(s + t0)] =λ
(∫ s

0
F (s + t0 − t )dt +

∫ ∞

t
F (s + t0 − t )dt

)
=λ

(∫ s+t0

t0

F (t )dt +
∫ t0

0
F (t )dt

)
.

Note that our goal is to determine x, namely, to find x∗ = argmint0=ℓ/x E[Nencounter(s + t0)]. Since
E[Nencounter(s + t0)] is a function only depending on t0 (given F and sufficiently large s), we com-
pute the derivative as follows. Let H(t0) = E[Nencounter(s + t0)] = λ

(∫ s+t0
t0

F (t )dt + ∫ t0
0 F (t )dt

)
.
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Then

dH

dt0
=λ

d

dt0

(∫ s+t0

0
F (t )dt −

∫ t0

0
F (t )dt +

∫ t0

0
F (t )dt

)
=λ

(
F (s + t0)−F (t0)+F (t0)

)
.

Since sufficiently large s implies that F (s + t0) ≈ 0, we roughly have that

dH

dt0
=λ(F (t0)−F (t0)) =λ(2F (t0)−1) .

It is clear that H(t0) achieves the minimum at t0 = t∗ where F (t∗) is roughly 1/2. Thus x∗ = ℓ/t∗

is roughly ℓ/G−1(1/2).

Example 3 (Spread of HIV). We would like to track the number of HIV infections. Suppose
that the spread of HIV follows a Poisson process with an unknown rate λ. Then the number of
individuals infected with HIV in time t has a Poisson distribution rate tλ and has independent
increments. Let G(t ) be the distribution of the incubation times. Namely, we assume that the
time fromwhen an individual becomes infected until symptoms of the disease appear is a random
variable having distribution G . We further assume that G is known and the incubation times of
different infected individuals are independent.
We also consider the following two infected individuals:

Type 1: individuals who have shown symptoms of the disease by time t .

Type 2: individuals who are infected but have not shown symptoms of the disease by time t .

Denote by Ni (t ) the number of type-i individuals. Note that the probability of an individual
infected at time s being type-1 is G(t − s). So we have

E[N1(t )] =λ

∫ t

0
G(t − s)ds =λ

∫ t

0
G(r )dr , and

E[N2(t )] =λ

∫ t

0
G(t − s)ds =λ

∫ t

0
G(r )dr .

However, the question here is that both λ andG are unknown. Since we can assume that the num-
ber of individuals showing symptoms are known, the following calculation gives an estimation
λ̂ of λ.
Let n̂1 be the number of individuals showing symptoms. We assume that n̂1 ≈ E[N1] is an esti-
mation of E[N1]. So we have

n̂1 =λ

∫ t

0
G(r )dr ,
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and let
λ̂= n̂1

λ
∫ t

0 G(r )dr
.

Then we can estimate E[N2(t )] by letting

n̂2 = λ̂

∫ t

0
G(r )dr = n̂1 ·

∫ t
0 G(r )dr∫ t
0 G(r )dr

In fact, all of the above examples are so-called non-homogeneous Poisson processes. We now for-
mally give the definition.

Definition 4 (Non-homogeneous Poisson Process). We say {N (t ) : t ≥ 0} is a non-homogeneous

Poisson process with rate λ(t ) if

1. N (0) = 0;

2. N (t ) has independent increments;

3. N (t )−N (s) has a Poisson distribution with rate
∫ t

s λ(r )dr .

Finally, we are ready to prove Theorem 5.

Proof of Theorem 5. We prove it by compute the distribution straightforwardly.
Given n1,n2, . . . ,nk and time t , conditioned on N (t ) =∑

ni , we can view the process inTheorem 5
as follows: we first generate ∑

ni arrivals according to a Poisson process and next for each arrival
we independently generate a uniform random number to determine its type.
Let n =∑

i ni , andU1,U2, . . . ,Un are uniformly and independently sampled from [0, t ]. We also let
Y1,Y2, . . . ,Yn are indpendent random variables associated with U1,U2, . . . ,Un respectively, where
Pr

[
Yi = j

]= pj (Ui ). Applying Theorem 4, we have

Pr[N1(t ) = n1, N2(t ) = n2, . . . , Nk (t ) = nk ]

= Pr[N1(t ) = n1, N2(t ) = n2, . . . , Nk (t ) = nk | N (t ) = n] ·Pr[N (t ) = n]

= Pr[m1 = n1,m2 = n2, . . . ,mk = nk ] ·Pr[N (t ) = n] ,

where mi is the number of j s such that Y j = i . Since U1,U2, . . . ,Uk are independently and iden-
tically distributed, it follows that Y1,Y2, . . . ,Yk have the same distribution. Moreover, the proba-
bility qi of the event Y j = i is given by

qi = 1

t
·
∫ t

0
pi (s)ds .
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Hence, we have

Pr[m1 = n1,m2 = n2, . . . ,mk = nk ] = n!

n1!n2! · · ·nk !
·qn1

1 qn2
2 · · ·qnk

k ,

and consequently

Pr[N1(t ) = n1, N2(t ) = n2, . . . , Nk (t ) = nk ]

= Pr[m1 = n1,m2 = n2, . . . ,mk = nk ] ·Pr[N (t ) = n]

= n!

n1!n2! · · ·nk !
·qn1

1 qn2
2 · · ·qnk

k ·e−λt · (λt )n

n!

=
k∏

i=1
eqiλt · (qiλt )ni

ni !
,

which completes our proof.

Remark. In a non-homogeneous Poisson process, although the number of type-i arrivals in units
of time still have a Poisson distribution, the time intervals between two consecutive type-i ar-
rivals DO NOT have exponential distributions any longer. In fact, the time intervals may NOT
be independent.
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