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Lecture 6 – Examples and Applications of Markov Chains (III)
2021年 3月 29日

Lecturer : 张驰豪 Scribe: 杨宽

Today we are going to talk about some algorithmic applications of Markov chains. For simplicity,
we assume that all Markov chains we discuss today are (I) and (A).

1 (Time-)Reversible Markov Chains and Metropolis Algorithm

Definition 1 ((Time-)Reversible Markov Chains). A Markov chain is called reversible (or time-

reversible) if there exists a distribution π s.t.

∀x, y ∈ S, π(x) ·P(x, y) =π(y) ·P(y, x) .

The equation above is called the detailed balance condition.

Proposition 1. If π exists, then π is the stationary distribution of P.

Proof. We now verify that π is the stationary distribution:

(πTP)(y) = ∑
x∈S

π(x) ·P(x, y)

= ∑
x∈S

π(y) ·P(y, x)

=π(y) · ∑
x∈S

P(y, x) =π(y) .

Remark. Checking the detailed balance condition is usually the simplest way to verify that a
particular distribution is stationary. Furthermore, the detailed balance condition implies that for
all x0, x1, . . . , xn ,

π(x0)P(x0, x1) · · ·P(xn−1, xn) =π(xn)P(xn , xn−1) · · ·P(x1, x0) ,

namely,

PrX0∼π[X0 = x0, X1 = x1, . . . , Xn = xn] = PrX0∼π[X0 = xn , X1 = xn−1, . . . , Xn = x0] .
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Thus, if a Markov chain {X t } satisfies the detailed balance condition and starts from the sta-
tionary distribution, then the distribution of (X0, X1, . . . , Xn) is the same as the distribution of
(Xn , Xn−1, . . . , X0), and that’s why the chains satisfying the detailed balance condition are called
time-reversible.

Example 2 (Random walks on graphs). Recall the simple random walk on graphs that we men-
tioned in the second lecture.
Given an undirected graph G = (V ,E), we define the random walk as follows.
Let X0, X1, . . . X t , . . . ∈ V , and for each Xi , pick a neighbor u of Xi uniformly at random and let
Xi+1 = u.
We showed in the second lecture that the stationary distribution of this Markov chain is

π=
( d1∑

dk
,

d2∑
dk

, . . . ,
dn∑

dk

)T
.

We now verify that this Markov chain is time-reversible:

π(i ) ·P(i , j ) = di∑
dk

· 1[i∼ j ]

di
= 1[i∼ j ]∑

dk
= d j∑

dk
· 1[i∼ j ]

d j
=π( j ) ·P( j , i ) ,

where we use ∼ to denote the relation of adjacency.

Question. Given an arbitrary distribution µ, can we design a random walk on the graph s.t. its
stationary distribution is µ?

Example 3 (Metropolis Algorithm). Let ∆ = maxi∈V deg(i ). Then for all i ∈ V , our algorithm
(random walk) moving from i has two steps:

1. for every neighbor j of i , propose to move to j with probability 1/∆;

2. accept with probability min
{µ( j )
µ(i ) ,1

}
.

Formally, we define the entries in the transition matrix P as follows:

P(i , j ) =


0, if i ̸∼ j and i ̸= j ;

1
∆ min

{µ( j )
µ(i ) ,1

}
, if i ∼ j ;

1−∑
i∼ j P(i , j ) , if i = j .

We now verify that µ is indeed the stationary distribution of P. If i = j or i ̸∼ j , it is clear that
µ(i )P(i , j ) =µ( j )P( j , i ). So we assume that i ∼ j , and w.l.o.g. we further assume that µ( j ) ≥µ(i ).
Since

µ(i )P(i , j ) =µ(i ) · 1

∆
·min

{µ( j )

µ(i )
,1

}
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we obtain that
µ( j )P( j , i ) =µ( j ) · 1

∆
· µ(i )

µ( j )
= µ(i )

∆

and
µ(i )P(i , j ) =µ(i ) · 1

∆
= µ(i )

∆
.

Question. However, if the distribution µ is already known, why do we design a Markov chain
instead of sampling directly?

In fact, for most algorithmic applications, the desired distribution µ is unknown or hard to com-
pute, but it is often much easier to calculate µ(i )/µ( j ). The key is that computing µ(i ) directly
costsΘ(|S|) times of calculation while the state distribution of a Markov chain may be sufficiently
close to stationary within o(|S|) runs.

Example 4. Let S= [n] = {1,2, . . . ,n}. For all i ∈ S, a weight w(i ) is given (by an oracle). Our goal
is to sample i ∈ S with the distribution µ satisfying

µ(i ) ∝ w(i ) ,

namely,
µ(i ) = w(i )∑

k w(k)
.

Then µ(i )/µ( j ) is easy to compute and the Markov chain is possible to mix rapidly.

2 Simulated Annealing

Given a set S, for all x ∈ S, x has a weight w(x). Our goal is to find an element x to minimize
w(x).

Example 5 (Maximum Independent Set). Given a graph G = (V ,E), a set I of vertices is called an
independent set iff

∀ i , j ∈ I , i ̸∼ j (i.e., (i , j ) ̸∈ E) .

The problem of maximum independent set is to find an independent set I of maximum size.
In other words, given an independent set I , let w(I ) = |V \ I |. Our goal is to find an independent
set S minimizing w(S).
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Remark. We will show in the Algorithm course that the problem of maximum independent set is
NP-hard.

Intuitively, we can define a distribution µ over S, where the elements of small weights have large
probability density, and then we can sample from the distribution. If the distribution we find has
sufficiently good properties, the element sampled from the distribution can become a sufficiently
good approximation.
However, for most situations we cannot ganrantee the time of convergence. To formalize this
problem, we first give an example.
We introduce a parameter T > 0 (which is called the temperature in the simulated annealing
method). For any T , let

µT (x) ∼ e−w(x)/T .

Then
µT (x) = e−w(x)/T∑

y e−w(y)/T
.

Clearly, for any T > 0, elements of larger weights will have smaller probability density. Moreover,
the smaller the parameter T is, the more the probability density will be concentrated on the most
weighted elements.
Our goal is to find an element x minimizing w(x). Let S∗ = {x ∈ S : w(x) = miny∈S w(y)} be the
set of all x to optimize w(x). Namely S∗ = argminx∈S w(x). So in other words our goal is to find
an element in S∗.
We also let µ∗ be the uniform distribution over S∗. Then µ∗ puts positive probability only on
globally optimal solutions of our optimization problem. If we can sample from µ∗, then our
problem is solved. However, usually it is impossible to sample from µ∗ directly, because the state
graph of the corresponding Markov chain may not be connected at all. We will see an example
of independent sets later. Now, the following fact indicates that we can sample from µT for
sufficiently small T instead of sampling from µ∗ directly.

Fact 2. As T ↓ 0, µT
D−→µ∗ (convergence in distritubion), that is, for all x,

lim
T→0

µT (x) =µ∗(x) .

We do not give a rigorous proof here, but we provide some intuitions. Fix an x ∈ S∗. For all y ̸∈ S∗,
µT (y)

µT (x)
= ew(y)/T

ew(x)/T
= e

w(x)−w(y)
T .

Since w(x) < w(y), we obtain that µT (y)/µT (x) → 0 as T → 0.
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Now let’s see the example of maximum independent sets.
Let S = {x ∈ {0,1}V : x is an independent set }, and let x ∼ y iff ∑|V |

i=1

∣∣x(i )− y(i )
∣∣ = 1. Then for

any T > 0, we define a Markov chain whose stationary distribution is µT via the Metropolis
Algorithm:

PT (x, y) =


1

n+1 min{e(w(x)−w(y))/T ,1} , if x ∼ y ;

1−∑
z

1
n+1 min{e(w(x)−w(z))/T ,1} , if x = y .

Moreover, in this problem the set consisting of all maximum independent sets (i.e., sets with
positive probability in µ∗) is not connected. In fact, even every maximal independent set is an
isolated vertex. So we consider sampling from µT instead of µ∗.
However if T is small enough (such as T = 0), the algorithm has a problem: at temperature T = 0,
the process will never make an uphill move. Thus, running at temperature 0 is a descent method,
whichwill get stuck in local minima, and therefore will not approach global minima. For example,
in the following figure, if the algorithm samples x ′ at some step, then with very high probability
(even probability 1 if T = 0) it will go left next. However the global minimum is to the right of x ′.

w(x)

x ′

So what is the simulated annealing method? Intuitively if we choose a great T at beginning, and
then gradually lower the temperature, we can get the chain to converge in distribution to µ∗. We
must lower the temperature slowly enough so that the chain can always “catch up” and remain
close to the stationary distribution for the current temperature.
Therefore, simulated annealing is not just another “descent method”, since we allow ourselves
positive probability of taking steps that increase the weight w . This feature of the procedure
prevents it from getting stuck in local minima.
Specifically, a simulated annealing procedure can be described as follows.
Choose a “cooling schedule” T0,T1, . . .; the schedules we will discuss later will have the property
that Tn ↓ 0 as n →∞. Choose the initial state X0 according to an arbitrary distribution ν0. Let
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the succession of states X0, X1, X2, . . . form a time-inhomogeneous Markov chain with probability
transition matrices PT0 ,PT1 ,PT2 , . . ., so that

Pr
[

Xn+1 = j | Xn = i
]= PTn (i , j ) ,

and
Xn ∼ νn where νn

T = ν0
T · PT0 · PT1 · · · · · PTn−1 .

Then the following theorem shows that νn will converge to µ∗ if we choose a cooling schedule
decreasing “slowly enough”.

Definition 6. Define the radius r of the state graph G of the Markov chain by

r = min
i∈Sc

max
j∈S

distG (i , j )

where Sc = {i ∈ S : w( j ) > w(i ) for some j ∼ i } be the set of all vertices that are not local maxima
of w .
Define L by the largest “local fluctuation” of w(·), that is,

L = max
i∈S

max
j∼i

∣∣w( j )−w(i )
∣∣ .

Theorem 3 (Simulated Annealing). For any cooling schedule T0,T1, . . . satisfying

1. Tn ↓ 0

2.
∑

k exp(−r L/Tkr−1) =∞,

we have

∀ν, νT · P(n) D−→ (µ∗)T as n →∞ ,

where

P(n) ≜
n−1∏
k=0

PTk .

Remark. Taking γ> r L and
Tn = γ

logn

for n > 1, it is easy to check that the conditions of the theorem hold.

Remark. The theorem tells us a simulated annealing procedure will converge to the optimal value,
but it doesn’t claim any results to the convergence time.
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3 Mixing Times

Now we are ready to discuss the speed of convergence (or formally, mixing) of Markov chains.
Recall the proof of the fundamental theorem of Markov chains. In the last lecture, we used cou-
pling to prove the theorem. We constructed two sequence of random variables

µ0 µ1 µt

≀ ≀ ≀
X0 → X1 → X2 → ··· → X t → X t+1 → ···

Y0 → Y1 → Y2 → ··· → Yt → Yt+1 → ···
≀ ≀ ≀
π π π

and a coupling Ct such that once X t = Yt then X t and Yt move together forever. The coupling
lemma establishes the connection between the distance of distributions and the discrepancy of
random variables. To show that

∥∥µt −π
∥∥
TV → 0, it is sufficient to compute Pr[X t ̸= Yt ].

Property (I)+ (A) ganrantees that there exists t > 0, s.t. ∀ i , j , Pt (i , j ) > 0. So Pr[X t = Yt ] > 0. Let

θ≜ Pr[X t = Yt ] ≥ min
i , j

(
Pt (i , j )

)2 .

Applying the Markov property, we have

Pr[Xkt ̸= Ykt ] ≤ (1−θ)k

and thus Pr[Xn = Yn] → 1 as n →∞.
Intuitively, the proof yields that there exists constants α ∈ (0,1) and C > 0 s.t.

max
x∈S

∥∥Pt (x, ·)−π
∥∥
TV ≤C ·αt .

Clearly the smaller α is, the faster the Markov chain converges. Note that α depends only on the
coupling we designed, so if we have a smart way to design a coupling which makes α very small,
then we can bound the speed of convergence.
It is useful to introduce a parameter which measures the time of convergence. We use themixing

time τmix(ε) to formalize the time required by a Markov chain for the distance to stationarity to
be small.
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Definition 7 (Mixing Time). Let {X t } be a Markov chain with transition matrix P and stationary
distribution π. Then the mixing time of the Markov chain is given by

τmix(ε) = max
µ0

min{t :
∥∥µt −π

∥∥
TV ≤ ε} ,

where µt
T =µ0

T · Pt .

Example 8 (Random walk on n-dimensional hypercube). An n-dimensional hypercube is the set
{0,1}n where

x ∼ y ⇐⇒
n∑

i=1

∣∣x(i )− y(i )
∣∣= 1.

Let {X t } be the random walk on the n-dimensional hypercube:

X t+1 =

X t , with probability 1/2;

one of X t ’s neighbor u.a.r. , with probability 1/2.

To bound the mixing time of this Markov chain, it is sufficient to design a coupling such that
for all x0 and y0, Pr

[
X t = Yt | X0 = x0,Y0 = y0

]
is large enough for some t > 0. Note that every

coupling gives a bound of Pr
[

X t = Yt | X0 = x0,Y0 = y0
]
and thus gives a bound of mixing time.

Our goal is to find a coupling which gives the bound as small as possible.
Actually, the random walk on hypercubes has another description: for any X t , we pick a position
i ∈ [n] and a value c ∈ {0,1} independently and uniformly at random, and then let X t+1 = X i←c

t .
We claim that the Markov chain is the same as the one defined above.
The advantage of this definition is that it induces a natural coupling directly. For any t > 0, let the
transfer of X t and Yt share the same randomness. Specifically, pick a position i ∈ [n] and a value
c ∈ {0,1} independently and uniformly at random, and then let X t+1 = X i←c

t and Yt+1 = Y i←c
t .

As long as we choose some position i , the values of X t and Yt at this position will be the same
from now on. So

Pr[X t = Yt ] ≥ Pr
[
pick all positions in the first t choices

]
.

The probability on the right side is a well-known problem called coupon collector. Now we claim
that for t > n lnn + cn, Pr[X t ̸= Yt ] < e−c . Thus the mixing time of the random walk is bounded
by

τmix(ε) ≤ min{t : Pr[X t ̸= Yt ] < ε} ≤ n lnn +n ln(1/ε) .

Finally we introduce the problem of coupon collector.
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Example 9 (Coupon Collector). Suppose there are n distinct types of coupons and someonewould
like to collect a complete set of all types of coupons. Each purchase gives an object from all n

types of coupons independently and uniformly at random. Let X be the random variable that
denotes the number of purchases until collecting all n types of coupons.

Lemma 4. The expectation of X with n distinct types of coupons is n lnn +O(n). Furthermore, the

probability that the collecting process does not end after n lnn+cn times of purchases is at most e−c .

The complete proof is left as an exercise.
Hints. The method to prove the expectation has been mentioned before (in Lecture 4), and the
following two lemmas are useful tools in the proof.

Lemma 5 (Harmonic Number). The limit of Hn − lnn exists, where

Hn ≜ 1+ 1

2
+ 1

3
+·· ·+ 1

n

is the harmonic number.
In fact, the limit is denoted by γ, i.e.,

γ≜ lim
n→∞Hn − lnn = lim

n→∞

n∑
k=1

1

k
− lnn .

Then γ≈ 0.577215665 is called the Euler’s constant (or Euler-Mascheroni constant).

Lemma 6 (Union Bound). Let A1, A2, . . . , An are n events. Then

Pr[A1 ∪ A2 ∪·· ·∪ An] ≤
n∑

i=1
Pr[Ai ] .
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