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1 2-SAT

Review of the last lecture:
2-SAT is the problem of determining whether a CNF formula

ϕ=C1 ∧C2 ∧·· ·∧Cm

on variables V has satisfying assignments, where each clause Ci consists of exact 2 literals. Our
goal is to find an assignment σ ∈ {0,1}V such that σ |=ϕ.
Here we introduce a much simpler randomized algorithm that can solve this problem with high
probability.

1. LetV = {v1, v2, . . . , vn} be the set of variables. Pick an arbitrary assignmentV → {true, false}.

2. If there exists a clause c that has not been satisfied yet, then pick one of two variables
incident to c uniformly at random and flip its value. Repeat this step 100n2 times, or until
there does not exist an unsatisfied clause.

3. The algorithm outputs no solution if there still exists an unsatisfied clause after running
100n2 times.

We claim that our algorithm outputs the correct answer with probability at least 1−1/100.

Proof (cont’d). Let σ : V → {true, false} be a satisfying assignment and our algorithm produces
100n2 assignments σ0,σ1, . . . ,σ100n2 . We now show that the probability that there is no such k

that σk =σ is at most 1/100.
Let Xi be a random variable that

Xi =
n∑

j=1
1[σi ( j )=σ( j )] .

The algorithm starts with X0 ≥ 0 and ends as long as Xm = n for some m. Note that

Pr[Xi+1 = Xi +1] ≥ 1/2, and
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Pr[Xi+1 = Xi −1] ≤ 1/2.

Here {Xi } is not a Markov chain, but let’s consider the following Markov chain {Yt }t≥0: {Yt } is a
random walk on N, and

Pr[Yt+1 = Yt +1] = Pr[Yt+1 = Yt −1] = 1/2.

As we already know,
EY

[
first hitting time of n | Y0

]= n2 −Y 2
0 .

Intuitively, {Xi } favors to be right (compared to {Yt }), so the first hitting time of n in {X t } should
be no later than the first hitting time of n in Markov chain {Yt } with Y0 = X0.
We will formalize the intuition in the next section, but now we just use it as a conclusion. So
EX

[
first hitting time of n | X0

]≤ n2 −X 2
0 ≤ n2. Thus, applying the Markov inequality,

PrX
[
first hitting time of n ≥ 100n2]≤ 1/100.

2 Stochastic Dominance

Now we formalize the intuition used in the last section, which we call stochastic dominance:

Definition 1 (Stochastic Dominance). Given two distributions µ and ν over R, we say that µ is
stochastically dominant ν, denoted by µ≽ ν, if for all a ∈R,

µ
(
[a,∞)

)≥ ν
(
[a,∞)

)
,

namely,
PrX∼µ[X ≥ a] ≥ PrX∼ν[X ≥ a] .

Remark. Let Fµ and Fν be the corresponding cumulative distribution functions of µ and ν respec-
tively. Then Figure 1 shows the relation between Fµ and Fν.

An interesting question is how we could prove stochastic dominance. But before introducing a
method, let us see some examples of stochastic dominance first.
The first one is the analysis of our algorithm for the 2-SAT problem.

Example 2 (2-SAT). Suppose that X t ∼µt and Yt ∼ νt . Then µt ≽ νt .

The second example is also a simple one.
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Figure 1: µ≽ ν

Example 3 (Binomial distribution). Consider the binomial distribution Bin(n, p) of the number
of success over n Bernoulli trials with success probability p . Then Bin(n, p)≽Bin(n, q) if p ≥ q .

Another example is an important random graph model.

Example 4 (Erdős-Rényi Random Graph). An Erdős-Rényi random graph, denoted by G(n, p),
is a graph on n vertices and each pair of vertices are independently connected by an edge with
probability p .
Let Xp be a random variable that Xp = 1[G∼G(n,p) is connected] and µp be the distribution of Xp . Then
µp ≽µq if p ≥ q .

Intuitively, we claim the existence of stochastic dominance in the three examples above, but we
haven’t proved them.
To prove stochastic dominance, we now introduce a powerful tool.

Definition 5 (Coupling (耦合)). Let µ,ν be two distribution. A coupling C of µ,ν is a joint distri-
bution of µ and ν.

Remark. Let (X ,Y ) ∼C. Then we have

∀x, Pr(X ,Y )∼C[X = x] =µ(x) ;

∀ y, Pr(X ,Y )∼C
[
Y = y

]=µ(y) .

Remark. Intuitively we can view a coupling as a way to fill in a table with nonnegative reals. For
example, let Ω= {1,2,3}, µ= (1/3,1/3,1/3)T and ν= (1/2,1/4,1/4)T. A coupling C of µ and ν is a
way to fill in the following table with nonnegative reals such that the summations of rows and
columns are equal to the corresponding marginal probabilities.
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µ

ν
1/2 1/4 1/4

1/3

1/3

1/3

Note that any joint distribution is a coupling, so there are infinite many couplings. We now
introduce a special one.

Definition 6 (Monotone Coupling). C is a monotone coupling of µ and ν if

Pr(X ,Y )∼C[X ≥ Y ] = 1.

Remark. A monotone coupling corresponds a way to fill in the table where all positive numbers
are only in the bottom left part (on or below the diagonal) of the table.

Question. Does a monotone couplings always exist?

Theorem 1. There is a monotone coupling of µ and ν if and only if µ≽ ν.

Proof of “=⇒ ”. Suppose C is a monotone coupling of µ and ν. Then

PrY ∼ν[Y ≥ a] = Pr(X ,Y )∼C[Y ≥ a]

= Pr(X ,Y )∼C[X ≥ Y ∧Y ≥ a]+Pr(X ,Y )∼C[X < Y ∧Y ≥ a]

= Pr(X ,Y )∼C[X ≥ Y ≥ a]

≤ Pr(X ,Y )∼C[X ≥ a] = PrX∼µ[X ≥ a] .

Remark. Intuitively, for the other direction, we can always fill in the table greedily. The rigorous
proof is left as an exercise.

Then the theorem tells us if we can construct a monotone coupling, then we can prove stochastic
dominance.
Now we construct monotone couplings for our Examples 2, 3 and 4.

2 Construct by induction. Let X0 = Y0. Assume that there exists a coupling Ct s.t. if (X t ,Yt ) ∼
Ct then Pr[X t ≥ Yt ] = 1. Construct Ct+1 as follows. Note that Pr[X t+1 = X t +1] = u for
some u ≥ 1/2, and Pr[Yt+1 = Yt +1] = Pr[Yt+1 = Yt −1] = 1/2. So we pick a real r in [ 0,1]

uniformly at random. Let X t+1 = X t +1 if r ≤ u and X t+1 = X t −1 otherwise. Similarly, let
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Yt+1 = Yt +1 if r ≤ 1/2 and Yt+1 = Yt −1 otherwise. Since u ≥ 1/2, X t+1 − X t ≥ Yt+1 −Yt ,
and thus X t+1 ≥ Yt+1.

3 Bin(n, p) is the distribution of the number of success over n independent trials, so we can
consider every trial independently. Suppose that X ∼Bin(1, p) and Y ∼Bin(1, q). Again we
pick a real r in [0,1] uniformly at random. Then let X = 1 iff r ≤ p and let Y = 1 iff r ≤ q .
So X ≥ Y .

4 Let Gp ∼ G(n, p) and Gq ∼ G(n, q). We generate Gp and Gq simultaneously. For each pair
of vertices (u, v) we independently pick a real r in [0,1] uniformly at random. Then Gp has
edge (u, v) iff r ≤ p and Gq has edge (u, v) iff r ≤ q . Thus Gq is a subgraph of Gp as long
as p ≥ q . So Xp ≥ Xq . Moreover applying the proof of Theorem 1 we obtain that

PrG∼G(n,p)[G is connected] ≥ PrG∼G(n,q)[G is connected] .

3 Coupling Lemma

Definition 7 (Total Variation Distance). Let Ω be a sample space and µ,ν ∈ [0,1]Ω be two dis-
tributions. Then the total variation distance of µ and ν is given by the half of the L1-norm of
µ−ν: ∥∥µ−ν

∥∥
TV ≜

1

2

∑
x∈Ω

∣∣µ(x)−ν(x)
∣∣ .

Equivalently, we can also define the total variation distance as

∥∥µ−ν
∥∥
TV ≜max

A⊆Ω
µ(A)−ν(A) .

µ

ν

Figure 2: The total variation distance between µ and ν
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Remark. Note that
∫
µdx = ∫

νdx. So
∫
µ(x)≥ν(x)µ(x)−ν(x)dx = ∫

µ(x)≤ν(x)ν(x)−µ(x)dx. See, for
example, Figure 2. The area of blue part is equal to the area of green part, and that is why the
first definition of the total variation distance has coefficient 1/2.

The following theorem reveals the connection between coupling and the total variation distance,
and thus is a powerful tool to compute the total variation distance.

Theorem 2 (Coupling Lemma). ∀ coupling C of distributions µ and ν. Then,

Pr(X ,Y )∼C[X ̸= Y ] ≥ ∥∥µ−ν
∥∥
TV .

Moreover, there exists an (optimal) coupling C∗ that achieves the equality.

Proof. Let’s view the coupling as a way to fill in the table. Then the probability Pr(X ,Y )∼C[X = Y ]

is the summation of numbers on diagonal. Intuitively, the number on i -th row and j -th column
is upper bounded by µ(i ) and ν( j ), so the summation of numbers on diagonal should be upper
bounded by ∑

x min{µ(x),ν(x)}. This intuition gives a proof of the coupling lemma directly:

Pr(X ,Y )∼C[X ̸= Y ] = 1−Pr(X ,Y )∼C[X = Y ]

= 1− ∑
z∈Ω

Pr(X ,Y )∼C[X = Y = z]

≥ 1− ∑
z∈Ω

min{µ(z),ν(z)}

= ∑
z∈Ω

(
µ(z)−min{µ(z),ν(z)}

)= ∥∥µ−ν
∥∥
TV .

Note that we only prove the lower bound of Pr(X ,Y )∼C[X ̸= Y ] here. The proof for the existence
of the optimal coupling is left as an exercise.
Finally, let’s prove the Fundamental Theorem for Markov Chains.

Theorem 3 (Fundamental Theorem for Markov Chains). (I)+ (A)+ (PR) =⇒ (S)+ (U)+ (C).

Proof. We already know that (I)+ (PR) =⇒ (S)+ (U). So we only need to prove convergence
here.
First we should characterize the convergence. We already know that there exists a unique sta-
tionary distribution π. What we would like to show is that for all starting distribution µ0, it holds
that

lim
t→∞

∥∥µt −π
∥∥
TV = 0,

where µt
T =µ0

T · Pt .
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Suppose that {X t } and {Yt } are two identical Markov chains starting from different distribution,
where Y0 ∼π while X0 is generated from an arbitrary distribution µ0.
Now we have two sequence of random variables:

µ0 µ1 µt

≀ ≀ ≀
X0 → X1 → X2 → ··· → X t → X t+1 → ···

Y0 → Y1 → Y2 → ··· → Yt → Yt+1 → ···
≀ ≀ ≀
π π π

The coupling lemma establishes the connection between the distance of distributions and the
discrepancy of random variables. To show that

∥∥µt −π
∥∥
TV → 0, it is sufficient to construct a

coupling Ct of µt and π and then compute Pr[X t ̸= Yt ].
Here we give a simple coupling. Let (X t ,Yt ) ∼ Ct and we construct Ct+1. If X t = Yt for some
t ≥ 0, then let X t ′ = Yt ′ for all t > t ′, otherwise X t+1 and Yt+1 are independent. Namely, {X t } and
{Yt } are two independent Markov chains until X t and Yt reach the same state for some t ≥ 0,
and once they meet together then they move together forever. The coupling lemma tells us that∥∥µt −π

∥∥
TV ≤ Pr[X t ̸= Yt ].

We now prove the theorem for the finite case, i.e., the state space of the Markov chain is a finite
set. Let’s review the property of (I) and (A). The property (I) implies that

∀ i , j , ∃n s.t. Pn(i , j ) > 0.

We claim that combining with property (A),

∃n s.t. ∀ i , j , Pn(i , j ) > 0.

Since the state space S is finite, it is sufficient to show that

∀ i , j , ∃ ti , j s.t. ∀n > ti , j , Pn(i , j ) > 0.

Suppose that there are s loops of length c1,c2, . . . ,cs starting from and ending at state i . Then
property (A) implies that

gcd(c1,c2, . . . ,cs) = 1.

Thus, by Bézout’s theorem there exists x1, x2, . . . , xs ∈Z such that

c1x1 + c2x2 +·· ·cs xs = 1.
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It yields straightforwardly that there exists y1, y2, . . . , ys ∈N such that

c1 y1 + c2 y2 +·· ·cs ys = b

for all sufficiently large b. (For example, b ≥ (|x1| + |x2| + · · · + |xs |)(c1 + c2 + ·· · + cs)2 suffices.)
Combining with property (I), we complete the proof for our claim.
Now we know that ∃n s.t. ∀ i , j , Pn(i , j ) > 0. Then we define

θ≜ min
x0,y0∈S

Pr
[

Xn = Yn | X0 = x0,Y0 = y0
]

.

For simplicity, we use Prx0,y0 [·] to denote the conditional probability Pr
[ · | X0 = x0,Y0 = y0

]
from

now on.
Fix z ∈ S. Let

α= min
w∈S

Pn(w, z) > 0,

and for any t ≥ 0 and z ′ ∈ S,

βt ,z ′ = Prx0,y0

[
X t = Yt = z ′∧X t ′ ̸= Yt ′ for all t ′ < t

]
.

By the Markov property and the independence of {X t } and {Yt } before X t = Yt , we obtain that

Prx0,y0 [Xn = Yn] ≥ Prx0,y0 [Xn = Yn = z]

= Prx0,y0 [Xn = Yn = z ∧∀ t < n, X t ̸= Yt ]+Prx0,y0 [Xn = Yn = z ∧∃ t < n, X t = Yt ]

=
(
Pn(x0, z) ·Pn(y0, z)−

n−1∑
t=0

∑
z ′
βt ,z ′ ·

(
Pn−t (z ′, z)

)2
)
+

n−1∑
t=0

∑
z ′
βt ,z ′ ·Pn−t (z ′, z)

≥ Pn(x0, z) ·Pn(y0, z) ≥α2 .

Hence θ > 0. By the coupling and the Markov property, we have

Prx0,y0 [X2n ̸= Y2n] =
∑

xn ̸=yn

Prx0,y0

[
X2n ̸= Y2n , Xn = xn ,Yn = yn

]
= ∑

xn ̸=yn

Prxn ,yn [Xn ̸= Yn] ·Prx0,y0

[
Xn = xn ,Yn = yn

]
≤ (1−θ)

∑
xn ̸=yn

Prx0,y0

[
Xn = xn ,Yn = yn

] ≤ (1−θ)2 ,

and so on (Prx0,y0 [Xkn ̸= Ykn] ≤ (1−θ)k ). It yields directly that

Pr[X t ̸= Yt ] =
∑

x0,y0

µ0(x0) ·π(y0) ·Prx0,y0 [X t ̸= Yt ] → 0

as t →∞. So we conclude that limt→∞
∥∥µt −π

∥∥
TV = 0 for the finite case.
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Remark. In our proof for the finite case, we use the following lemma.

Theorem 4 (Bézout’s Theorem). Let a,b ∈Z be any two integers, then there exist u, v ∈Z such that

au +bv = gcd(a,b) .

However, for the infinite case, the proof is a bit more complicated. The complete proof can be
found in the reference materials. Here we only give a brief summary.

Proof for the infinite case. Suppose the state space S is countably infinite. Let P : S×S → [0,1]

be the transition function. Assume that P is (I) (irreducible), (A) (aperiodic) and (PR) (positive-
recurrent).
Similar to the finite case, we run two chains {X t }t≥0 and {Yt }t≥0 independently with X0 ∼µ0 and
Y0 ∼π, and couple them once they meet. We consider the transition function Q

(
(·, ·), (·, ·)) of the

product chain Zt = (X t ,Yt ) before X t = Yt (so that both chain run independently).
Notice that if Q is (I) and (PR), then we are done. The theorem follows directly from Pi , j (Tk,k <
∞) = 1 for any i , j ,k ∈ S, where Tk,k is the first hitting time of (k,k) inQ and Pi , j is the probability
conditioned on (X0,Y0) = (i , j ).
First we prove that Q is (I). For any i , j ,k,ℓ, we would like to find a certain n such that

Qn(
(i , j ), (k,ℓ)

)= P n(i ,k) ·P n( j ,ℓ) > 0.

Similar to the finite case, (A) and (I) for P imply that for any j , k , and sufficiently large n, it holds
that P n( j ,k) > 0 and therefore concludes the proof.
Next we prove that Q is (PR). This is trivial given (I) since Q has a stationary distribution.
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