
AI2613 随机过程 2020–2021春季学期

Lecture 4 – Examples and Applications of Markov Chains (I)
2021年 3月 15日

Lecturer : 张驰豪 Scribe: 杨宽

1 Galton–Watson Process

The model was formulated by F. Galton in the study of the survival and extinction of family
names. In the nineteenth century, there was concern amongst the Victorians that aristocratic
surnames were becoming extinct. In 1873, Galton originally posed the question regarding the
probability of such an event, and later H. W. Watson replied with a solution.
Using more modern terms, the process can be defined formally as follows:

Definition 1 (Galton–Watson Process). Suppose that all the individuals reproduce independently
of each other and have the same offspring distribution. More precisely, let Gt denote the number
of individuals of t-th generation.

• We start from the zero generation. For convenience, let G0 = 1.

• Each individual of generation t gives birth to a random number of children of generation
t+1: ∀ t ≥ 0 and i ∈ [Gt], let X t ,i denote the number of children of the i -th individual. Then
{X t ,i } is an array of i.i.d. random variables with Pr

[
X t ,i = k

]= pk for all t ≥ 0 and i ∈ [Gt].

• All individuals of generation t +1 are children of individuals of generation t :

Gt+1 =
Gt∑

i=1
X t ,i .

The sequence {Gt }t≥0 is called the Galton–Watson Process with offspring distribution p .

Remark. It is clear that the process {Gt }t≥0 is a Markov chain.

Denote by ρ the probability of extinction, namely,

ρ≜ Pr[extinction] = Pr[∪t≥1{Gt = 0}] .

Then the question is to determine the value of ρ.
Here are two simple examples:

1

• p0 = 0 =⇒ ρ = 0;

• p0 > 0∧p0 +p1 = 1 =⇒ ρ = 1.

So from now on, we assume that p0 > 0 and p0 + p1 < 1. Using the Markov property, we can
calculate ρ as follows:

ρ = Pr[extinction] =
∞∑

k=0
Pr[extinction∧G1 = k]

=
∞∑

k=0
Pr[extinction |G1 = k] ·pk

=
∞∑

k=0
ρk ·pk ,

where in the last equation we use the independence of X t ,i . So ρ should satisfy that ρ =∑
k ρ

k ·pk .
To analyze this equation, now we introduce a powerful tool: probability generating functions.

Definition 2 (Probability Generating Function). Let X be a discrete random variable defined on a
probability space with probability measure Pr[·]. Assume that X has non-negative integer values.
The probability generating function of X is given by

GX (z)≜ E
[
z X]= ∞∑

k=0
Pr[X = k] · zk .

Let ψ(z) be the probability generating function of the number of children, i.e.,

ψ(z) =
∞∑

k=0
pk · zk ,

then ρ satisfies that ρ =ψ(ρ), namely, z = ρ is a fixed point of ψ(z).
Note that ψ(z) has the following properties:

Proposition 1. Properties of ψ(z) on [0,1]:

• ψ′(z) =∑∞
k=1 k ·pk · zk−1 ≥ 0. So ψ(z) is an increasing function.

• ψ(1) = 1 and ψ(0) = p0 > 0.

• ψ′′(z) =∑∞
k=2 k(k −1) ·pk · zk−2 ≥ 0. So ψ(z) is a convex function.

Remark. In general, the generating function is a formal power series (形式幂级数). Usually gen-
erating functions allow us to use them without worrying about convergence, but still be careful
when you are evaluating them at some point.
In particular, the series of probability generating functions converge for all |z| ≤ 1.

2

Howmany fixed points can a convex increasing function have? The answer is at most 2. However,
there are still two kinds of possible functions on [0,1] (See Figure 1). Ifψ(z) isψ1-type, then z = 1

is the only fixed point for ψ(z). If ψ(z) is ψ2-type, then there is another fixed point z = r ∈ [0,1].
So there are two questions: which type of function ψ(z) is and which fixed point ρ is.

r 1

f (z) = z

ψ1 ψ2

Figure 1: Which fixed point is ρ?

Here are the two cases:

1. ψ1-type: ψ′(1) ≤ 1 =⇒ ∑
k≥1 k ·pk = E

[
X t ,i

]≤ 1.

2. ψ2-type: ψ′(1) > 1 =⇒ E
[

X t ,i
]> 1. We claim that ρ is the smaller fixed point r .

Proof. Now we prove our claim. Let qt ≜ Pr[Gt = 0]. By definition it is clear that qt ≤ qt+1 < 1

and ρ = limt→∞ qt . Denote by qt ↑ ρ that {qt } is an increasing sequence and converges to ρ. Then
we prove by induction that qt ≤ r for all t ≥ 0.
The base case is t = 0, where qt = 0 ≤ r .
Then, assume that t ≥ 0 and qt ≤ r . Note that

qt+1 =
∞∑

k=0
pk ·qk

t

=ψ(qt) ≤ψ(r) = r .

Thus by induction it yields that qt ≤ r for all t ≥ 0. Combining with qt ↑ ρ and ρ ∈ {r,1}, we
conclude that ρ = r .

In summary, ρ = Pr[extinction] < 1 iff E
[

X t ,i
]> 1.

3

2 Gambler’s Ruin

Review the definition of Gambler’s ruin, which we introduced in Lecture 2.

Definition 3 (Gambler’s ruin). Consider a gambler who starts with an initial fortune of 1 and then
on each successive gamble either wins 1 or loses 1 independent of the past with probabilities p

and q = 1−p respectively. The gamble ends when the gambler reaches the total fortune of N (the
gambler wins) or gets ruined (the gambler loses).
Let Xn be the total fortune after the n-th gamble. Then X0 = 1 and for all t ≥ 0,

Pr
[

X t+1 = j | X t = i
]=



1, if i = j = 0;

1, if i = j = N ;

p, if 1 ≤ i ≤ N −1 and j = i +1;

q, if 1 ≤ i ≤ N −1 and j = i −1.

We can use a state-transition graph or an automaton to describe the Markov chain:

0 1 2 3 · · · · · · N −1 N

1

q

p

q

p

q

p

q

p

q

p

q 1

Figure 2: Gambler’s ruin

Question. Suppose that start at X0 = i . What is the probability of ending at N?

Let Zi = Xi+1 − Xi . Then Xi = X0 +∑i−1
j=1 Z j . Let Pi be the probability that eventually win at N

when starting from i , i.e. Pi = Pr[win | X0 = i]. Here are two simple cases: P0 = 0 and PN = 1. For
1 ≤ i ≤ n −1, applying the total probability theorem, we obtain that

Pi = Pr[win | X0 = i]

= Pr[win∧X1 = i +1 | X0 = i]+Pr[win∧X1 = i −1 | X0 = i]

= Pr[win | X0 = i ∧Z0 = 1] ·Pr[Z0 = 1 | X0 = i]+Pr[win | X0 = i ∧Z0 =−1] ·Pr[Z0 =−1 | X0 = i]

= Pi+1 ·p +Pi−1 ·q ,

where we use the Markov property for the last equation. Thus,

Pi+1 = 1

p
·Pi − 1−p

p
·Pi−1 ,

4

which is a second order linear recurrence. Now we write the recurrence as multiplication of ma-
trices: (

Pi+1

Pi

)
=

 1
p

p−1
p

1 0

(
Pi

Pi−1

)
=

 1
p

p−1
p

1 0

i (
P1

P0

)
.

Let A =
 1

p
p−1

p

1 0

. But how can we calculate Ai? A natural idea is to diagonalize A. Then we

should calculate A’s eigenvalues first:

|A−λI| =
∣∣∣∣∣∣

1
p −λ

p−1
p

1 −λ

∣∣∣∣∣∣
=λ2 − 1

p
·λ+ 1−p

p
.

Thus |A−λI| = 0 ⇐⇒ pλ2 −λ+ (1−p) = 0 ⇐⇒ (λ−1)(pλ+p −1) = 0, which implies that A has
two eigenvalues λ1 = 1 and λ2 = (1−p)/p .
Note that if A has 2 different eigenvalues then A has 2 linearly independent eigenvectors. Hence
the following theorem tells us that A is diagonalizable.

Theorem 2 (Diagonalization Theorem). An n ×n matrix is diagonalizable if and only if it has n

linearly independent eigenvectors.

So there are 2 cases for diagonalizing A: p ̸= 1/2 or p = 1/2.

• Case 1: p ̸= 1/2. Then A is diagonalizable, that is, ∃ an invertible 2×2 matrix Λ s.t.

A =Λ

1 0

0 1−p
p

Λ−1 ,

thus we obtain that

Ai =Λ

1 0

0
(1−p

p

)i

Λ−1 and Pi = a +b ·
(1−p

p

)i
for some a, b .

Since P0 = 0 and PN = 1, we have

a +b = 0

a +b · (q
p

)N = 1

 =⇒
 a =−b

b = 1
(q/p)N−1

.

Therefore,
Pi = 1

1− (q
p

)N
·
(
1−

(q

p

)i
)

.

5

• Case 2: p = 1/2. In this case Pi+1 = 2Pi −Pi−1. Then Pi+1 −Pi = Pi −Pi−1, which implies
that {Pi } is an arithmetic progression. So Pi = a +b · i for some a, b. Substituting it by
P0 = 0 and PN = 1 we obtain that Pi = i /N .

Overall, it turns out that

Pi =


1−(q/p)i

1−(q/p)N , if p ̸= 1/2;

i
N , if p = 1/2.

Now we introduce another example and see how to apply this result.
Suppose that we have a kind of new drug drug1 and a classical drug drug2. Let Pi be the pro-
portion of cured patients after using drugi . Assume that P2 is well-known while P1 is unknown.
Our goal is to determine whether P1 > P2.
Suppose (X1,Y1), (X2,Y2), . . . , (Xn ,Yn), . . . is a sequence of pairs of patients. Let patient Xi take
drug1 and patient Yi take drug2 for all i . With abuse of notations here, we also let Xi , Yi be the
indicator random variables that indicates whether the patient recovers after taking the medicine.
Now let Zi = Xi −Yi and Sn = ∑n

i=1 Zi . The test ends as long as Sn = M or Sn = −M for some
threshold value M . If the test ends with Sn = M , then we believe P1 > P2, otherwise we believe
P1 < P2. So the question is, what is the probability that we are wrong?
W.l.o.g. assume that P1 > P2. The test result is wrong if and only if the test ends with Sn =−M .
Note that

Zi =


1 with probability P1(1−P2) ,

−1 with probability P2(1−P1) ,

0 otherwise .

We now let

p = Pr[Zi = 1 | Zi ̸= 0] = P1(1−P2)

P1(1−P2)+P2(1−P1)
and q = 1−p .

Then the probability Pr[test ends with Sn =−M] is exactly the same as the probability of loss,
namely, Pr[lose | X0 = M] in the Gambler’s ruin model of winning threshold 2M .
Applying the result of the Gambler’s ruin model, we conclude directly that

Pr[test ends with Sn =−M] = 1−Pr[win | X0 = M]

= 1− 1− (q/p)M

1− (q/p)2M
= 1− 1

1+ (q/p)M

= 1

1+ (p/q)M
= 1

1+ (P1(1−P2)
P2(1−P1)

)M
.

6

3 Another Example of Random Walks

Consider the following random walk, where q = 1−p . The only difference between it and the
Gambler’s ruin is the successive state of state 0.

0 1 2 3 · · · · · · N −1 N

1

q

p

q

p

q

p

q

p

q

p

q 1

Figure 3: Another random walk similar to Gambler’s ruin

Let Hi be the number of steps to reach state N for the first time when X0 = i , and hi = E[Hi]. We
first consider two simple cases:

• h0 = 1+h1 since starting from 0 the only choice is moving to 1;

• hN = 0.

Generally, for all i ≥ 1, we have

hi = q ·hi−1 +p ·hi+1 +1,

which yields a inhomogeneous second order linear recurrence hi+1 = hi /p −hi−1 · q/p −1/p . Let
si =−i /(2p −1). Then si+1 = si /p − si−1 ·q/p −1/p , and thus

(hi+1 − si+1) = (hi − si)/p − (hi−1 − si−1) ·q/p .

Applying the method in Section 2, we obtain that hi − si = a +b(q/p)i for some a and b.
The key to solve an inhomogeneous linear recurrence is to find a particular solution, such as
si =−i /(2p −1) in our case. However, the way to find a particular solution is heuristic and a bit
tricky. Now we would like to introduce another method.
Let Yi be the number of steps to reach state i +1 for the first time when X0 = i , and yi = E[Yi].
Then it is clear that

Hi =
N−1∑
j=i

Y j and hi =
N−1∑
j=i

y j .

Similarly to the case of hi , we can calculate the solution to the boundary case and find the recur-
rence for yi as follows:

• y0 = 1;

• yi = 1+q(yi−1 + yi) for all i ≥ 1.

7

Hence for all i ≥ 1,
yi = 1

p
+ yi−1 · q

p
.

It implies that

y0 = 1

y1 = 1

p
+ q

p
= 1

p
+α

y2 = 1

p
+α

(1

p
+α

)
= 1

p
+ 1

p
·α+α2

y3 = 1

p
+α

(1

p
+ 1

p
·α+α2

)
= 1

p
+ 1

p
·α+ 1

p
·α2 +α3

...

yi = 1

p

i−1∑
j=0

α j +αi ,

where we use α to denote q/p . If α= 1, then yi = 2i −1, otherwise

yi = 1

p
· 1−αi

1−α
+αi .

In particular, if α= 1, then h0 =∑N−1
i=0 (2i +1) = N 2.

Remark. The solution here is similar to the solution to the well-known Coupon Collector Problem.

The fact that h0 = N 2 if α= 1 has many important applications, such as the 2-SAT problem.
2-SAT is the problem of determining whether a CNF formula whose clauses consist of exact 2

literals has satisfying assignments. For example,

(x ∨ y)∧ (y ∨¬z)∧ (¬x ∨ z)

is a 2-CNF formula, and x = y = z = true is one of its satisfying assignments. The problem of
2-SAT is to determine whether such formulas have satisfying assignments.
There exists a polynomial-time deterministic algorithm based on graph theory that can solve 2-
SAT problem perfectly. But now we introduce a much simpler randomized algorithm that can
solve this problem with high probability.

1. LetV = {v1, v2, . . . , vn} be the set of variables. Pick an arbitrary assignmentV → {true, false}.

2. If there exists a clause c that has not been satisfied yet, then pick one of two variables
incident to c uniformly at random and flip its value. Repeat this step 100n2 times, or until
there does not exist an unsatisfied clause.

8

3. The algorithm outputs no solution if there still exists an unsatisfied clause after running
100n2 times.

We claim that our algorithm outputs the correct answer with probability at least 1−1/100.

Proof. It is clear that if a 2-SAT instance has no solution then our algorithm will always gives the
correct answer. Sowe consider the probability that our algorithm outputs no solution conditioned
on that the instance indeed has a satisfying assignment.
Letσ : V → {true, false} be a satisfying assignment and our algorithm produces 100n2 assignments
σ0,σ1, . . . ,σ100n2 . We claim that the probability that there is no such k that σk = σ is at most
1/100.
Let Xi be a random variable that

Xi = |{v ∈V : σi (v) ̸=σ(v)}| .

In fact, {Xi } is not a Markov chain. But we can still analyze it. The whole proof will be given in
the next lecture.

(To be continued…)

9

	Lecture 4 – Examples and Applications of Markov Chains (I)
	Galton–Watson Process
	Gambler's Ruin
	Another Example of Random Walks

