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1 Notations and Conventions

To simplify our notations and statements, wewill use (I) (A) (R) (S) (U) (C) to denote the following
properties of Markov chains:

(I) irreducible,

(A) aperiodic,

(R) recurrent,

(S) ∃ a stationary distribution,

(U) ∃ a uniqueness stationary distribution,

(C) convergence.

Moreover, we will use the notations (NR) and (PR) to denote “null recurrent” and “postive recur-
rent” respectively, while the definition of “null recurrent” and “positive recurrent” will be given
later.

2 An Example of Infinite Markov Chains

Review of the last lecture: for finite Markov chains, the fundamental theorem of Markov chains
tells us

(I)+ (A) =⇒ (U)+ (C) .

But how about infinite space?

Let’s first consider the following example.

Example 1 (One-dimensional random walk with an absorbing barrier). The Markov chain is a
one-dimensional random walk on N with an absorbing barrier at 0.

Question. What’s the stationary distribution of the above Markov chain?
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Clearly, we have some necessary conditions as follows: assume that there exists a stationary
distribution π, then

π(0) = (1−p) ·π(0)+ (1−p) ·π(1)

=⇒ π(0) = 1−p

p
·π(1) ,

π(1) = p ·π(0)+ (1−p) ·π(2)

= (1−p) ·π(1)+ (1−p) ·π(2)

=⇒ π(1) = 1−p

p
·π(2) ,

and so on…

It implies that

π(i ) = 1−p

p
·π(i +1) for i ≥ 0 and

∞∑
n=0

π(n) = 1.

So {π(n)} should be a geometric progression, and there are three cases:

1. p < 1/2: we have
π(i ) =

( p

1−p

)i
·π(0) ,

so
1 =∑

n

( p

1−p

)n
·π(0) =π(0) · 1

1− p
1−p

=π(0) · 1−p

1−2p
,

which implies that
π(i ) =

( p

1−p

)i
· 1−2p

1−p
.

(In fact, there exists a stationary distribution indeed.)

2. p > 1/2: π(0) <π(1) < ·· · =⇒ no stationary distribution.

3. p = 1/2: π(0) =π(1) = ·· · =⇒ no stationary distribution.

Although neither case 2 nor case 3 has a stationary distribution, they are still different. As we
saw in the last lecture, case 3 is recurrent but case 2 is not.
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Case 1 is also recurrent. However, there is a fundamental difference between the recurrence in
case 1 and case 3 — case 1 is “positive recurrent” while case 3 is “null recurrent”. Wewill introduce
it later, but now let us focus on the core question:

Question. When does an infinite chain have a stationary distribution?

3 Law of Large Numbers

In order to answer the question above, we first review the law of larger numbers.

Definition 2 (Convergence). Let X0, X1, X2, . . . be a sequence of random variables defined on an
underlying sample space Ω and an underlying σ-algebra F. We start by defining different modes
of convergence.

• Convergence in probability. X t is said to converge to X in probability (written X t
P−→ X ) if

∀ε> 0, Pr[|Xn −X | > ε] → 0.

• Almost sure convergence. We say that the sequence X t converges almost surely to X (writ-
ten X t

a.s.−→ X ), if ∃M ∈F, s.t.

1. Pr[M ] = 1;

2. ∀ω ∈ M , Xn(ω) → X (ω) as n →∞.

Namely,
Pr

[
lim

n→∞Xn = X
]
= 1.

Fact 1. Almost sure convergence =⇒ convergence in probability.

Example 3.

X1, . . . , Xn , . . . where Xn =

1 with probability 1
n ;

0 with probability 1− 1
n .

Then Xn
P−→ 0 but Xn ̸ a.s.−→ 0.

Now we review the law of large numbers. Suppose that X1, . . . , Xn , . . . are i.i.d. random variables
s.t. E[Xi ] =µ and Var [Xi ] <∞. Let Sn ≜ 1

n

∑n
i=1 Xi .

Theorem 2 (Weak Law of Large Numbers (WLLN)).

Sn
P−→µ .

Namely, ∀ε> 0, Pr
[∣∣Sn −µ

∣∣> ε
]→ 0.
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Theorem 3 (Strong Law of Large Numbers (SLLN)).

Sn
a.s.−→µ .

Namely, Pr
[
limn→∞ Sn =µ

]= 1.

Recall that T j is the first hitting time of j . We are now going to show the strong law of large
numbers for Markov chains.

Theorem 4 (Strong Law of Large Numbers for Markov Chains). Let X0, X1, . . . be a Markov chain

starting at X0 = i . Suppose that state i communicates with another state j . Then,

Pi

[
lim

n→∞
1

n

n∑
t=1

1[X t= j ] = 1

E j
[
T j

]]
= 1.

Proof. Consider the following three cases:

1. Case 1: j is transient. If j is transient, then E j
[
T j

] = ∞ since P j [T j = ∞] > 0. On the
other hand, applying Proposition 10 in the last lecture we have E j

[
N j

]<∞. Namely, N j =
limn→∞

∑n
t=1 1[X t= j ] < ∞ with probability 1. Thus, limn→∞ 1

n

∑n
t=1 1[X t= j ] = 0 = 1/E j

[
T j

]
with probability 1.

2. Case 2: i = j is recurrent. Let ci be the length of the i -th cycle starting from j and then
returning back to j . Then c1,c2, . . . are i.i.d. random variables with E[ci ] = E j

[
T j

]
. Let

Sk = c1 + c2 +·· ·+ ck .

c1

c2

c3

c4

n

Let vn ≜max{k : Sk ≤ n}. So Svn ≤ n ≤ Svn+1, which yields that

Svn

vn
≤ n

vn
≤ Svn+1

vn
.

Since vn →∞ as n →∞, applying the strong law of large numbers, we have

Svn

vn

a.s.−→ E j
[
T j

]
and

Svn+1

vn
= Svn+1

vn +1
· vn +1

vn

a.s.−→ E j
[
T j

]
.

Thus vn/n
a.s.−→ 1/E j

[
T j

]
.
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3. Case 3: i ̸= j and j is recurrent. The finite path i → j is negligible.

Next we need the following bounded convergence theorem:

Theorem 5 (Bounded Convergence Theorem). Let { fn} be a sequence of bounded measurable func-

tions on a set of finite measure E . If fn → f uniformly on E , then

lim
n→∞

∫
E

fn =
∫

E
f .

Namely, if Xn are bounded and Xn → c with probability 1, then E[Xn] → c as n →∞.

Combining with the bounded convergence theorem, the strong law of large numbers for Markov
chains yields the following two corollaries for finite chains.

Corollary 6. For any irreducible Markov chain (if (I)) and any two states i , j ,

lim
n→∞

1

n

n∑
t=1

Pt (i , j ) = 1

E j
[
T j

] .

(Since Ei
[
1[X t= j ]

]= Pt (i , j ).)

Corollary 7. By the fundamental theorem of Markov chains,

(I)+ (A)+ (S) =⇒ lim
n→∞Pn(i , j ) =π( j ) ,

thus we have

(I)+ (A)+ (S) =⇒ 1

E j
[
T j

] =π( j ) ,

where we use the Cesàro summation:

Proposition 8 (Cesàro summation). Suppose a1, a2, . . . , an , . . . is a sequence and an → a. Then we

have
1

n

n∑
i=1

ai → a .

In fact, assuming (I) and (S) , we can obtain π( j ) = 1
E j [T j ] directly, which we will show in the

next section.
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4 Existence of Stationary Distribution for Infinite Chains

Now we are ready to answer the following question.

Question. When does an infinite chain have a stationary distribution?

Definition 4 (Null Recurrence and Positive Recurrence). Recall that “recurrence” means Pi [Ti <
∞] = 1. There are two types of recurrence:

• positive recurrence: A state i is positive recurrent if Ei [Ti ] <∞.

• null recurrence: A state i is null recurrent if Ei [Ti ] =∞.

Theorem 9. Assuming (I), (PR) ⇐⇒ (S) + (U).

Proof. We first show the “⇐= ” direction. Let Ni (n) be the number of visits of state i in the first
n steps. Assuming (I), the strong law of large numbers for Markov chains shows that

P j

[
lim

n→∞
Ni (n)

n
= 1

Ei [Ti ]

]
= 1.

Suppose π is a stationary distribution. Let X0 ∼π, i.e. X0 = i with probability π(i ). Then applying
the bounded convergence theorem it gives that

EX0∼π
[

Ni (n)

n

]
=

n∑
t=1

EX0∼π
[
1[X t=i ]

]
n

= n · π(i )

n
= 1

Ei [Ti ]
.

Since the chain is irreducible, π(i ) > 0 holds for every state i , and thus Ei [Ti ] <∞ for all i .
Next we prove the “ =⇒ ” direction. For the uniqueness part, let π be a stationary distribution.
Applying the proof of the “⇐= ” direction, the stationary distribution π satisfies π(i ) = 1/Ei [Ti ],
thus the stationary distribution is unique.
For the existence part, we begin the proof by assuming that the state space S is finite. By Corol-
lary 6,

lim
n→∞

1

n

n∑
t=1

Pt (i , j ) = 1

E j
[
T j

] .

Since ∑
j∈SPt (i , j ) = 1, we have ∑

j∈S

1

E j
[
T j

] = 1,

which yields that π is a probability distribution where π(i ) = 1/Ei [Ti ]. We claim that π is a
stationary distribution for the chain.
Now we come to prove our claim. We write out the matrix equation Pt · P = Pt+1 as follows:∑

k
Pt (i ,k) ·P(k, j ) = Pt+1(i , j ) .
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Summing over t = 1,2, . . . ,n, it gives that

∑
k

( 1

n

n∑
t=1

Pt (i ,k)
)
·P(k, j ) = 1

n

n∑
t=1

Pt+1(i , j ) .

Taking the limit as n →∞ for the both sides, it yields that∑
k

1

Ek [Tk ]
·P(k, j ) = 1

E j
[
T j

] .

Thus, π is indeed a stationary distribution of the chain.
Finally, we are going to handle the infinite case. Let A ⊆ S be a finite subset of S. Note that when
S is infinite, there exists a technical issue — P is no longer a matrix. But we can still define Pt (i , j )

as the probability that starting from i the chain accesses j after exact t steps. Then Corollary 6
still holds, that is,

lim
n→∞

1

n

n∑
t=1

Pt (i , j ) = 1

E j
[
T j

] .

(Corollary 6 is implied by Theorem 4 and 5, which does not necessarily require the finite space.)
So we have ∑

j∈A

1

E j
[
T j

] = ∑
j∈A

lim
n→∞

1

n

n∑
t=1

Pt (i , j ) = lim
n→∞

1

n

n∑
t=1

∑
j∈A

Pt (i , j ) ≤ 1.

Therefore, c ≜∑
j∈S 1

E j [T j ] ≤ 1. Given (I), c > 0. Actually, we will see that c must be 1 later. Now,
similarly to the finite space case, we also have∑

k∈A
Pt (i ,k) ·P(k, j ) ≤ Pt+1(i , j ) ,

and thus, ∑
k∈A

1

Ek [Tk ]
·P(k, j ) ≤ 1

E j
[
T j

] .

Taking the supremum over all finite subsets A of S, it implies that∑
k∈S

1

Ek [Tk ]
·P(k, j ) ≤ 1

E j
[
T j

] .

Taking the summation over all state j , it gives that∑
j

∑
k

1

Ek [Tk ]
·P(k, j ) ≤∑

j

1

E j
[
T j

] = c .

However, the left side of the above inequality is∑
j

∑
k

1

Ek [Tk ]
·P(k, j ) =∑

j
c ·P(k, j ) = c ,
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which is exactly the right side of the inequality. Hence for all j ∈ S we have∑
k

1

Ek [Tk ]
·P(k, j ) = 1

E j
[
T j

] ,

and thus π̃(i ) = 1
c · 1

Ei [Ti ] is a stationary distribution. By the proof of the uniqueness part, if the
chain does have a stationary distribution, then it has the unique stationary distribution π where
π(i ) = 1/Ei [Ti ]. So c = 1 and we complete our proof.
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