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1 Discrete Markov Chain

Definition 1 (Discrete Markov chain). Suppose there is a sequence of random variables

X0, X1, . . . , X t , X t+1, . . .

where Range(Xi ) ⊆ S for some countable set S. Then {Xn} is a discrete Markov chain if ∀ t ≥ 0 and
∀a0, a1, . . . , at+1 ∈ S,

Pr[X t+1 = at+1 | X t = at , X t−1 = at−1, . . . , X0 = a0] = Pr[X t+1 = at+1 | X t = at ] .

Remark. If for all i , j ∈ S, there exists a constant pi , j such that

∀ t ≥ 0, Pr
[

X t+1 = j | X t = i
]= pi , j ,

the Markov chain is called a time-homogeneous Markov chain.

Example 2 (Gambler’s ruin). Consider a gambler who starts with an initial fortune of 1 and then
on each successive gamble either wins 1 or loses 1 independent of the past with probabilities p

and q = 1−p respectively. The gamble ends when the gambler reaches the total fortune of N (the
gambler wins) or gets ruined (the gambler loses).
Let Xn be the total fortune after the n-th gamble. Then X0 = 1 and for all t ≥ 0,

Pr
[

X t+1 = j | X t = i
]=



1, if i = j = 0;

1, if i = j = N ;

p, if 1 ≤ i ≤ N −1 and j = i +1;

q, if 1 ≤ i ≤ N −1 and j = i −1.

We can use a state-transition graph or an automaton to describe the Markov chain:
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Example 3 (Random walk on Z). The set of state S is Z, and the transition probability is given by

pi , j = Pr
[

X t+1 = j | X t = i
]=

1/2, if
∣∣i − j

∣∣= 1;

0, otherwise .

Remark. If the state space S is a finite set, we can use an |S| × |S| matrix P ∈ [0,1]S×S to denote
transition probabilities, where P(i , j ) = pi , j .

Let µt be the distribution of X t , i.e. X t ∼µt . Then ∀ i ∈ S,

µ1(i ) = Pr
[

X1 = j
]= ∑

i∈S
Pr

[
X1 = j ∧X0 = i

]
= ∑

i∈S
Pr[X0 = i ] ·Pr[X1 = j | X0 = i

]
= ∑

i∈S
µ0(i ) ·pi , j

Suppose that S= {0,1, . . . , N }, then we can use a column vector to denote µt , where

µt = (µt (0),µt (1), . . . ,µt (N ))T .

Thus µ1
T =µ0

T · P, and by induction, it follows directly that

∀ t ≥ 0, µt
T =µt−1

T · P =µt−2
T · P2 = ·· · =µ0

T · Pt .

Definition 4 (Stochastic matrix). A stochastic matrix P is a square matrix whose columns are
probability vectors, i.e. P ∈ [0,1]S×S and ∀i , ∑ j∈S P(i , j ) = 1.

Question. Does Pt converge as t →∞?

2 Stationary Distribution

Definition 5 (Stationary distribution). Let {Xn} be a Markov chain with transition matrix P. Sup-
pose π is a distribution such that

π ·P =π .

Then π is called a stationary distribution of Markov chain {Xn}.
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Remark. Note that the definition of the stationary distribution does not depends on the conver-
gence of the Markov chain. We will see the connection between them later.

Example 6 (Random walk on undirected graph). Suppose G = (V ,E) is an undirected graph with
n vertices and m edges. Let di = deg(i ) denote the degree of vertex i . We define a Markov chain
on G :

P(i , j ) =

1/di , if i ∼ j ;

0, if i 6∼ j .

Then what is the stationary distribution π?
Suppose G is a regular graph, i.e., di is a constant d for all i . Then π= (1/n,1/n, . . . ,1/n)T. If G is
not a regular graph, we claim that the stationary distribution is

π=
( d1∑

dk
,

d2∑
dk

, . . . ,
dn∑

dk

)T
.

Note that ∑
dk = 2m. So π= (

d1
/

2m,d2
/

2m, . . . ,dn
/

2m
)T. It is easy to verify that π is indeed a

stationary distribution. We will leave it as an exercise here.

Question. Why do we need to study stationary distribution?

One of the motivations comes from theMarkov chain Monte Carlomethod. The key to the method
is to design a Markov chain whose stationary distribution is the desired one.

Example 7 (Cards shuffling). Let’s consider a naïve “top-to-random” card shuffle:

n cards

Suppose we have n cards, everytime we take the top card
of the deck and insert it into the deck at one of the n dis-
tinct possible places uniformly at random.
Let i , j be two permutations on [n]. W.l.o.g. assume that
i = (1,2, . . . ,n). Then P(i , j ) > 0 iff there exists k s.t. j =
(2,3, . . . ,k,1,k +1, . . . ,n).

Performing the shuffle repeatedly is a Markov chain. It is not difficult to verify that the uniform
distribution (1/n !,1/n !, . . . ,1/n ! )T over all permutations is a stationary distribution. We leave it
as an exercise again.

Question. For stationary distributions, we have the following three questions: under which con-
dition can we prove
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1. the existence of a stationary distribution π?

2. the uniqueness of π?

3. the convergence of the Markov chain?

In the next part of this lecture, we are going to answer these questions.

2.1 Finite States

We first consider the case that the state space is a finite set. Then we claim that the answer to
Question 1 is always “yes”, i.e., any finite Markov chain has stationary distribution.

Definition 8 (Spectral radius). Let A be a n ×n nonnegative matrix. Then the spectral radius of
A, denoted by ρ(A), is the maximum norm of its eigenvalues. Namely,

ρ(A) = max {|λ| : det(λI−A) = 0} .

Fact 1. Let A = (ai , j ) ∈Rn×n
≥0 be a nonnegative matrix, i.e., ai , j ≥ 0. Then

min
1≤i≤n

n∑
j=1

ai , j ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

ai , j .

Theorem 2 (Perron-Frobenius Theorem). Let A = (ai , j ) ∈Rn×n
≥0 be a nonnegative matrix with spec-

tral radius ρ(A) =α. Then α is a eigenvalue of A, and has both left and right nonnegative eigenvec-

tors.

Perron-FrobeniusTheorem answersQuestion 1: Let P be a stochastic matrix. Then P·1 = 1. Thus
Fact 1 implies that ρ(P) = 1. So PT has eigenvalue 1 and there exists π≥ 0 s.t. PT· π=π.
For Question 2 and 3, let’s consider the following Markov chain.

1 2

p

q

1−p 1−q

Then π=
(

q
p+q , p

p+q

)T
is a stationary distribution. Now let ∆t ≜

∣∣µt (1)−π(1)
∣∣. We have

∆t =
∣∣(µt−1

T ·P
)
(1)−π(1)

∣∣
=

∣∣∣∣(1−p) ·µt−1(1)+q · (1−µt−1(1)
)− q

p +q

∣∣∣∣
=

∣∣∣∣(1−p −q) ·µt−1(1)+q ·
(
1− 1

p +q

)∣∣∣∣
= ∣∣1−p −q

∣∣ ·∆t−1 .
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So ∆t → 0 except for

1. p = q = 0;

2. p = q = 1.

Case 1: p = q = 0

In this case, we call theMarkov chain reducible and the stationary distributionsmay not be unique.

1 2

1 1

Definition 9 (Reducibility). We say that j is accessible from i iff ∃ t > 0, s.t. Pr
[

X t = j | X0 = i
]> 0.

Moreover, i communicates with j if i is accessible from j and j is accessible from i .
We also define an equivalence relation i ' j : i ' j iff i communicates with j .
Then a Markov chain is irreducible iff the number of equivalent classes is 1. In other words, the
state graph is strongly connected. Otherwise, the Markov chain is called reducible.

Fact 3. If a Markov chain is irreducible, then its stationary distribution is unique. Otherwise its

stationary distributions may not be unique.

Case 2: p = q = 1

In this case, X t = X0 if t is even and X t is the other state if t is odd. Then the Markov chain is
called a periodic chain.

1 2

1

1

For all i ∈ S, let di ≜ gcd{u : Pu(i , i ) > 0}. Namely, di is the greatest common divisor of the length
of all loops starting from i and ending at i . Then we have the following lemma.

Lemma 4. If i and j communicate with each other, then di = d j .

Proof. Suppose that Pn1 (i , j ) > 0, Pn2 ( j , i ) > 0 and Pn( j , j ) > 0. Note that di | (n1 +n2) and di |
(n1+n2+n). Thus di | n. It is easy to see that for all n that Pn( j , j ) > 0, di | n. So di | d j , and vice
versa.
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Definition 10 (Periodicity). A Markov chain is aperiodic if di = 1 for all i , and is periodic other-
wise.

Fact 5. Periodic chains do not converge.

In fact, these two cases are the only cases that the answer to Question 2 or 3 is “No”.

Theorem 6 (Fundamental Theorem of Markov Chains). If a finite Markov chain {Xn} with transi-

tion matrix P is irreducible and aperiodic, then there exists a unique stationary distribution π, and

∀µ, lim
t→∞µT · Pt →πT .

2.2 Countably Infinite States

Now we assume that the state space is a countably infinite set.
Note that if the state space is infinite, then we do not have Perron-Frobenius Theorem, so the
answer to Question 1 is not always be “yes”.
First we should introduce the concept of recurrence.

Definition 11 (Recurrence (常返)). Let Ti be the first hitting time of i , i.e. Ti = inf {t > 0 : X t = i }.
Then

• i is recurrent if Pi (Ti <∞) = 1, and

• i is transient if i is not recurrent.

Here Px is defined as Px(A ) = Pr[A | X0 = x].

Remark. What does “Pr[T <∞] = 1” mean?
T <∞ is an event in the σ-algebra, specifically, {T <∞} =∪n{T < n}. So

Pr[T <∞] = 1 ⇐⇒ lim
n→∞Pr[T < n] = 1.

Let’s see an example of Gambler’s ruin:
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• recurrent: state 0, 4;

• transient: state 1, 2, 3.

For recurrent states, we have the following propositions.

6



Fact 7. Let Ni be the total number of visits of the Markov chain to state i , that is, Ni ≜
∑∞

t=0 1[X t=i ].

If i is recurrent, then Pi [Ni =∞] = 1.

(Why? The proof is left as an exercise.)

Proposition 8. If i is recurrent, and j is accessible from i , then

1. Pi (T j <∞) = 1;

2. P j (Ti <∞) = 1;

3. j is recurrent.

Proof. Suppose i 6= j since the result is trivial otherwise. Here we only give an informal proof
but it is not difficult to rigorized it.

1. Let q = Pi [reach j before return i ]. It is easy to see that q > 0. Then

Pi [reach j before n times return i ] = 1− (1−q)n .

By Fact 7, Pi [Ni =∞] = 1, so

Pi [T j <∞] = lim
n→∞1− (1−q)n → 1.

2. If P j [Ti <∞] = 1− q < 1, then with probability q , it never comes to i from j . Thus with
probability p ′q , it never returns to i from i , where p ′ is the probability that access j from
i .

3. (1)+(2) =⇒ (3): starting from j the chain is certain to visit i eventually, and starting from
i the chain is certain to visit j eventually, which implies that starting from j the chain is
certain to visit i and will definitely get back to j after that.

Corollary 9. For a finite and irreducible Markov chain, every states is recurrent.

Proposition 10. i is recurrent ⇐⇒ Ei [Ni ] =∞.

Proof. The “ =⇒ ” direction is clear. Since Pi [Ni =∞] = 1 by Fact 7, we obtain that Ei [Ni ] =∞.
Now let’s consider the “⇐= ” direction.
Suppose not, that is, i is transient. Then Pi [Ti =∞] = q > 0. Namely, with probability q starting
from i it will never return. So the distribution of Ni is the Geometric distribution and E[Ni ] =
1/q .
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Example 12 (Drunk person and drunk birds). Consider the d-dimensional randomwalk. Let Sn =∑n
i=1 Xi where Xi ∈ (±1,±1, . . . ,±1) = {+1,−1}d . We want to understand whether this Markov

chain is recurrent, or if a person standing at the origin can come back in a finite amount of time.
By the theory developed so far, we only need to check whether the quantity E0[N0] =∑

n Pn(0,0)

is finite or not. It turns out that this depends on how large d is.
First, we consider the case d = 1. Let n = 2m. Then

Pn(0,0) =
(

2m

m

)
·2−2m .

Using Stirling’s approximation, where n! ≈p
2πn(n/e)n , it yields that(

2m

m

)
·2−2m = (2m)!

(m!)2
·2−2m

≈
p

4πm
(2m

e

)2m

2πm
(m

e

)2m ·2−2m

= 1p
πm

.

So ∑
n

Pn(0,0) =∑
m

P2m(0,0) ≈∑
m

1p
πm

→∞ .

For greater d , we have the following result since all dimension are mutually independent:

P2m(0,0) ≈
( 1p

πm

)d
=π−d/2 ·m−d/2 .

Thus, ∑
m

P2m(0,0) =

∞, if d ≤ 2;

Θ(1), otherwise .

Since a bird lives in a 3-dimensional space yet a person lives in a 2-dimensional space, our calcu-
lation justifies the following famous quote:

“A drunk person will always find their way home, while a drunk bird may get lost

forever.”
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