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Lecture 14 — Brownian Motion (II)
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1 Another Characterization of Brownian Motion

Recall that we defined a (standard) Brownian motion in the last lecture. A Brownian motion

{W()} =0 is standard if W(1) has a standard normal distribution.

Definition 1 (Standard Brownian Motion (Wiener Process)). A stochastic process {W(#)};> is

said to be a standard Brownian motion if
« W(0)=0.

« Independent increments. VO=1f< 1) <:-- < fy,
W(tn) = W(tp-1), W(ty-1) —Wl(tp-2), ..., W) - Wl(k)

are independent.

Stationary increments. Vt,s > 0, W(t + s) — W(¢) only depends on s, and has a normal

distribution N(0, s) for some constant o.

o WI(t) is continuous.

We now introduce another characterization of a standard Brownian motion. Recall the definition
of high dimensional Gaussian distribution. Suppose that X = (Xj, X»,..., X};) is a n-dimensional

vector. Then X is said to be Gaussian if ¥V a1, ay, ..., ay,
al-Xl +a2-X2+---+an-Xn

has a (one-dimensional) Gaussian distribution. Another way to define high dimensional Gaussian
is to give the probability density function. If there exists a n-vector p and a symmetric, positive

semidefinite n x n matrix X such that the probability density function can be written as

(&) =@m) "2 |detz| M exp(—3- (- w'Z & - w).



In fact, if X is a Gaussian, we obtain that
X = (Cov(Xi,Xj))l.yj, and (i) =E[X;].

To introduce another characterization of a standard Brownian motion, we first define the Gaus-

sian process.

Definition 2 (Gaussian Process). A stochastic process {W(f)};>¢ is called a Gaussian process if
Vo< h < <1y,
(W(1), W(tp),..., W(ty))

is a Gaussian.
Then a standard Brownian motion could be described by a Gaussian process.

Definition 3. A stochastic process {W(#)};>¢ is called a standard Brownian motion if
1. {W(#)} is a continuous Gaussian process;
2. Vs, E[X(8)]=0;
3. Vst Cov(X(s),X(¥) =s.
Remark. It is more clear to use Definition 3 to justify a stochastic process is a Brownian motion.

The only difficulty is to compute the covariance.

We recall the definition of covariance here:
Cov(X,Y) =E[(X -E[X])(Y —E[YD].
We now verify that Definition 1 and Definition 3 are equivalent.

Proof. We first assume that {W(t#)} is a standard Brownian motion defined by Definition 1. We
now show that it satisfies all conditions in Definition 3.
Fix s < t. We first show that (W(s), W(t)) is a Gaussian vector. Note that Va, b e R,

a-Ws)+b-W(t)=a-W(s)+b-(W(t)—W(s) + W(s))

=(a+b)-W(s)+b-(W(t)— W(s))

is the sum of two independent Gaussian variables. So a-W(s)+b-W(t) has a Gaussian distribution
as well. Next we compute Cov(W(s), W(t)) as follows:

Cov(W(s), W(1r)) = Cov(W(s), W(t) — W(s) + W(s))

= Var[W(s)] + Cov(W(s), W(t) — W(s))

=S.



Thus we justify that {W(#)} satisfies all conditions in Definition 3.
We now show that a stochastic process {X(#)} satisfying conditions in Definition 3 is a Brownian

motion defined by Definition 1. Since VO < #; <--- < 1,
(X(tl))X(IZ)v)X(tn))

is a Gaussian vector, it is clear that X (#) has independent increments and X (#) — X(s) has a Gaus-
sian distribution. We also know that E[X (#)] = 0, and Var[X(#)] = Cov(X(?), X(?)) = t, so it justi-
fies that {X(#)} is indeed a Brownian motion defined by Definition 1. ]

Example 4. Suppose {W(t)} is a standard Brownian motion. We claim that
X)) =t-WQ1ly, X(0)=0

is also a standard Brownian motion.
We use Definition 3 to verify that {X(#)} is a standard Brownian motion. First, for all a;, ay, ..., a,
and i< hH <-- <t

Y ai-t;- W(l/t;)

has a Gaussian distribution since {W(#)} is a Gaussian process. Therefore {X(#)} is also a Gaussian
process. It is clear that for all £ = 0, E[X ()] = ¢-E[W(1/1)] = 0. Hence it suffices to verify the

covariance. Fix s < t,

Cov(X(s), X(8)) =Cov(s-W(1/s),t-W(1/1))
=s-1-Cov(W(1/s), W(1/1))

=s-t-1/t =s.

Remark. In fact, a nonstandard Brownian motion could be generated by a standard Brownian

motion.
Definition 5. X(f) is a (u, 0%) Brownian motion if
X)) =X0)+pu-t+o-W(r).
Example 6 (Hitting Time). We now consider the hitting time in a Brownian motion. Let
T, 2 inf{t = 0: W(¢t) > b}.

Since W(t) is continuous, it is clear that W(7p) = b, and V t < 1, W(1) < b.



Figure 1: A hitting time and the reflection principle

Now, we are interested in the distribution of 7;,. Namely, for all ¢ > 0, our goal is to compute

Pr(r, < t].

Prit, < t] =Pr[tp, < t AW(t) > b] +Prt, < t AW(t) < b]
=Pr[W(t) > b] +Pr[W(t) < b| 1} < t] - Pr[1} < 1]

1
=Pr[W(t) > b] + > ‘Prir, < t].

Here we use the reflection principle, which yields that for every ¢’ < t, Pr[W(t) <b|1,=1'] =
Pr[W( H>blty=1t ] by symmetry. Therefore, it follows that

Prir, < t] =2-PriW(f) > b] =2- (1 —cp(%)),

where ®(-) is the cumulative distribution function of the standard Gaussian distribution, i.e.,

O(x) = ~212 4y
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2 Brownian Bridge

Consider a Brownian motion starting from W(0) = 0 and ending at W(u) = x.

Conditioned on fixed W(0) and W(u), an interesting question is to ask the distribution of W(¥).
Intuitively, since {W(t)} is a Brownian motion, we have (W(f), W(u)) is a Gaussian vector, and
thus W(#) itself is a Gaussian variable. So it is sufficient to compute its mean and variance. A

reasonable conjecture is - x/u. We now rigorously prove our intuition.

Proposition 1. W(¢#) — (t/u) - W(w) is independent of W(u).



Proof. We prove it by verifying that the covariance of the two random variables is 0. Note that

Cov(W(1) = (t/u) - W(w), W(w)) = Cov(W(1), W(w)) — (t/u) - Cov(W(u), W(u))

=t—(t/w)-u =0,

which justifies the desired proposition. [

Figure 2: A Brownian bridge

We now compute the mean and variance of W(t) by applying Proposition 1.

Since E[W(#)] = E[W(u)] = 0 in a Brownian motion, it follows that

O:[E[W(t)—é-W(u)

:[E[W(t)—é-W(u) | W)

t

=E[W(r) | W(w)] - P -E[W(w) | W(w)]
t

=E[W() | W(w)] - ;-W(u),

which implies that
r
E[W(D) | W(w)] = o W(w).

Next, we compute the variance of W(t) conditioned on W(u) as follows:
Var[W(t) | W(w)] = E|(W(r) —E[W(?) | W(u)])2 | W(u)]

[ r
=E|(W(n - W(w)* | W(u)

=L

t
(W -—- W)

L 0 2f t* 2
=E[W(z) ]—;-[E[W(t)-W(u)]+?-[E[W(u) ]

2t2+ > tu-1

u u? u



Finally, to characterize the distribution of {W(#)} conditioned on W(u) = x, we also need the

covariances:
Cov(W(s), W(2) | W(w)) = E[W(s)- W(8) | W(w)] —E[W(s) | W(w)] -E[W(2) | W(w)]
st >
= fRy'[E[W(S) | WD) =y, W] - pwin (y | W) dy = —7 - W(w)
ot
= [y ElWe 1w = 3] puioly | W) dy - > - wiw?
) ot

:fy‘ﬂ'r)vv(r)(ylW(u))dy—s—z-W(u)2

R r u

ot

= 2 E[W(? | W] -~ - Wy

S 2 S- t )
=<+ (Var[W(n) | W)l + EIW(D) | Wa)?) = — - W(w)

s (tu-1 5\ S+f )

B s(lu—1)

)

u

where pwiy () is the probability density function of W(t).
In summary, the Brownian bridge has a distribution with the above properties. Now it is natural

to define the following standard Brownian bridge given these properties.

Definition 7 (Standard Brownian Bridge). A stochastic process {X(f)};>o is called a standard
Brownian bridge, if {X(¢)} ends at X (1) =0, that is,

1. X(0)=X(1)=0;

2. Cov(X(s),X(1) =s(1—1).

Remark. We now construct a standard Brownian bridge. Let
X2 W) -t-w).
Then we claim that {X(#)} is a standard Brownian bridge.
Example 8. [Hitting Probability in a Brownian Bridge] Recall that
7, 2inf{t =0: W(t) > b}.

Now we are interested in Pr[7; < u | W(u) = x], namely, the probability of hitting b before ending

at W(u) = x. Clearly, if b < x, then 7; < u. So we assume that b > x.



Note that
Prity, <unW(u) = x|

Pr(W(u) = x]
Informally, let dx denote the interval [x, x + k] as h is an infinitesimal. So we are interested in
Pritp < un W(u) € dx]

1
Pr(W(u) € dx] (1)
We now compute the denominator and numerator respectively. Since W(u) ~ N(0, u), we obtain

that

Pritp, <u| W(u)=x]=

1
— - W(u) ~N(©,1).
N (u) 0,1

Hence, the denominator is

1 dx
Pr(W(u) edx] = Pr[— -W(u) € —

Vu Vu
dx 1 X
:q)(\/g) :\/g"p(\/g)dx @)
where
P(x) = L . e—x2/2
V2m

is the probability density function of the standard normal distribution. Applying the reflection
principle, the numerator is
Pritpy <unW(u) edx] =Pr[ty <u] -Pr(W(u) edx| 1 < u]
=Pr[ty < u]-Pr[W(u) €2b—dx| 1 < u]
=Pr[ty <unW(u)€2b—dx]
=Pr[W(u) € 2b - dx]

1 2b—-x
= dx. 3
olF ) ax )
Plugging (2) and (3) into (1) we conclude that
2b(b—x)
Prity, <u| W(u) =x] = exp(—T).

Example 9 (Kolmogorov-Smirnov test). Suppose there is an oracle that claims to be able to gen-
erate random numbers. We would like to check if it is indeed a random number generator.

Suppose that Uy, Uy,... € [0,1] are sampled from distribution F (by the oracle) where F is the
cumulative distribution function. Our goal is to determine whether F(¢f) = ¢t holds forall0 < ¢ < 1.

Let
1 n
Fn(t) = —'Zﬂ[uiq]-
noi=

Then the algorithm (Kolmogorov—-Smirnov test) outputs

7



. reject, if F(t) —t = b for some t € [0,1];
« accept, otherwise.

Now the problem is to determine the minimun value of b to make the probability of failure suffi-
ciently small (i.e., < 1/100). We further assume that F(f) = ¢, and we hope the algorithm output
accept.

Applying the central limit theorem, F,(¢) has a normal distribution with mean ¢ as n goes to
infinity. For fixed ¢, we have

Var[ﬂ[Uiq]] =t(l-1.

Now let
Xp() = Vn - (Fy() - t).

By the central limit theorem, it follows that
D
Xn(5) = N(0,2(1 - 1).
In fact, using the high dimensional central limit theorem, we further obtain that
T D
(Xn(11), Xn(12)) — N(0, 11 - 1))
where 11 (1 — 1) is the covariance of X,,(#;) and X,,(t2) since

Cov(Nu<n) Mw<n)) = E[Mw<n) - Nu<e] — - &2
=h-h-fh =n-1).

Thus, it implies that
(Xn (00, Xn(12), .0, X (1) 2 (W (02), W (82), .., Wi (£0)"
where W, (?) is a standard Brownian bridge. Using the result in Example 8, we conclude that
Pr[F,(t) - t = b] = exp(-2b?),

and hence we could obtain the minimun value of b by solving the inequality exp(—2b*) < 1/100.
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