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1 Another Characterization of Brownian Motion

Recall that we defined a (standard) Brownian motion in the last lecture. A Brownian motion
{W(t )}t≥0 is standard if W(1) has a standard normal distribution.

Definition 1 (Standard Brownian Motion (Wiener Process)). A stochastic process {W(t )}t≥0 is
said to be a standard Brownian motion if

• W(0) = 0.

• Independent increments. ∀0 = t0 < t1 < ·· · < tn ,

W(tn)−W(tn−1), W(tn−1)−W(tn−2), . . . , W(t1)−W(t0)

are independent.

• Stationary increments. ∀ t , s > 0, W(t + s)−W(t ) only depends on s, and has a normal
distribution N(0, s) for some constant σ.

• W(t ) is continuous.

We now introduce another characterization of a standard Brownian motion. Recall the definition
of high dimensional Gaussian distribution. Suppose that X = (X1, X2, . . . , Xn) is a n-dimensional
vector. Then X is said to be Gaussian if ∀a1, a2, . . . , an ,

a1 ·X1 +a2 ·X2 +·· ·+an ·Xn

has a (one-dimensional) Gaussian distribution. Another way to define high dimensional Gaussian
is to give the probability density function. If there exists a n-vector µ and a symmetric, positive
semidefinite n ×n matrix Σ such that the probability density function can be written as

f (x̄) = (2π)−n/2 · |detΣ|−1/2 ·exp
(−1

2 · (x̄ −µ)TΣ−1(x̄ −µ)
)

.
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In fact, if X is a Gaussian, we obtain that

Σ= (
Cov

(
Xi , X j

))
i , j , and µ(i ) = E[Xi ] .

To introduce another characterization of a standard Brownian motion, we first define the Gaus-
sian process.

Definition 2 (Gaussian Process). A stochastic process {W(t )}t≥0 is called a Gaussian process if
∀0 < t1 < ·· · < tn , (

W(t1),W(t2), . . . ,W(tn)
)

is a Gaussian.

Then a standard Brownian motion could be described by a Gaussian process.

Definition 3. A stochastic process {W(t )}t≥0 is called a standard Brownian motion if

1. {W(t )} is a continuous Gaussian process;

2. ∀ s, E[X (s)] = 0;

3. ∀ s ≤ t , Cov(X (s), X (t )) = s.

Remark. It is more clear to use Definition 3 to justify a stochastic process is a Brownian motion.
The only difficulty is to compute the covariance.
We recall the definition of covariance here:

Cov(X ,Y ) = E[(X −E[X ])(Y −E[Y ])] .

We now verify that Definition 1 and Definition 3 are equivalent.

Proof. We first assume that {W(t )} is a standard Brownian motion defined by Definition 1. We
now show that it satisfies all conditions in Definition 3.
Fix s ≤ t . We first show that (W(s),W(t )) is a Gaussian vector. Note that ∀a,b ∈R,

a ·W(s)+b ·W(t ) = a ·W(s)+b · (W(t )−W(s)+W(s))

= (a +b) ·W(s)+b · (W(t )−W(s))

is the sum of two independent Gaussian variables. So a ·W(s)+b ·W(t ) has a Gaussian distribution
as well. Next we compute Cov(W(s),W(t )) as follows:

Cov(W(s),W(t )) =Cov(W(s),W(t )−W(s)+W(s))

=Var[W(s)]+Cov(W(s),W(t )−W(s))

= s .
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Thus we justify that {W(t )} satisfies all conditions in Definition 3.
We now show that a stochastic process {X (t )} satisfying conditions in Definition 3 is a Brownian
motion defined by Definition 1. Since ∀0 < t1 < ·· · < tn ,(

X (t1), X (t2), . . . , X (tn)
)

is a Gaussian vector, it is clear that X (t ) has independent increments and X (t )−X (s) has a Gaus-
sian distribution. We also know that E[X (t )] = 0, and Var[X (t )] =Cov(X (t ), X (t )) = t , so it justi-
fies that {X (t )} is indeed a Brownian motion defined by Definition 1.

Example 4. Suppose {W(t )} is a standard Brownian motion. We claim that

X (t ) = t ·W(1/t ), X (0) = 0

is also a standard Brownian motion.
We use Definition 3 to verify that {X (t )} is a standard Brownian motion. First, for all a1, a2, . . . , an

and t1 ≤ t2 ≤ ·· · ≤ tn , ∑
ai · ti ·W(1/ti )

has a Gaussian distribution since {W(t )} is a Gaussian process. Therefore {X (t )} is also a Gaussian
process. It is clear that for all t ≥ 0, E[X (t )] = t ·E[W(1/t )] = 0. Hence it suffices to verify the
covariance. Fix s ≤ t ,

Cov(X (s), X (t )) =Cov(s ·W(1/s), t ·W(1/t ))

= s · t ·Cov(W(1/s),W(1/t ))

= s · t ·1/t = s .

Remark. In fact, a nonstandard Brownian motion could be generated by a standard Brownian
motion.

Definition 5. X (t ) is a (µ,σ2) Brownian motion if

X (t ) = X (0)+µ · t +σ ·W(t ) .

Example 6 (Hitting Time). We now consider the hitting time in a Brownian motion. Let

τb ≜ inf{t ≥ 0 : W(t ) > b} .

Since W(t ) is continuous, it is clear that W(τb) = b, and ∀ t < τb , W(t ) < b.
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Figure 1: A hitting time and the reflection principle

Now, we are interested in the distribution of τb . Namely, for all t > 0, our goal is to compute
Pr[τb < t ].

Pr[τb < t ] = Pr[τb < t ∧W(t ) > b]+Pr[τb < t ∧W(t ) < b]

= Pr[W(t ) > b]+Pr[W(t ) < b | τb < t ] ·Pr[τb < t ]

= Pr[W(t ) > b]+ 1

2
·Pr[τb < t ] .

Here we use the reflection principle, which yields that for every t ′ < t , Pr
[
W(t ) < b | τb = t ′

] =
Pr

[
W(t ) > b | τb = t ′

]
by symmetry. Therefore, it follows that

Pr[τb < t ] = 2 ·Pr[W(t ) > b] = 2 ·
(
1−Φ

( bp
t

))
,

where Φ(·) is the cumulative distribution function of the standard Gaussian distribution, i.e.,

Φ(x) = 1p
2π

·
∫x

−∞
e−t 2/2 dt .

2 Brownian Bridge

Consider a Brownian motion starting from W(0) = 0 and ending at W(u) = x.
Conditioned on fixed W(0) and W(u), an interesting question is to ask the distribution of W(t ).
Intuitively, since {W(t )} is a Brownian motion, we have (W(t ),W(u)) is a Gaussian vector, and
thus W(t ) itself is a Gaussian variable. So it is sufficient to compute its mean and variance. A
reasonable conjecture is t ·x/u. We now rigorously prove our intuition.

Proposition 1. W(t )− (t/u) ·W(u) is independent of W(u).
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Proof. We prove it by verifying that the covariance of the two random variables is 0. Note that

Cov(W(t )− (t/u) ·W(u),W(u)) =Cov(W(t ),W(u))− (t/u) ·Cov(W(u),W(u))

= t − (t/u) ·u = 0,

which justifies the desired proposition.

b

x

τb u

Figure 2: A Brownian bridge

We now compute the mean and variance of W(t ) by applying Proposition 1.
Since E[W(t )] = E[W(u)] = 0 in a Brownian motion, it follows that

0 = E

[
W(t )− t

u
·W(u)

]
= E

[
W(t )− t

u
·W(u) |W(u)

]
= E[W(t ) |W(u)]− t

u
·E[W(u) |W(u)]

= E[W(t ) |W(u)]− t

u
·W(u) ,

which implies that
E[W(t ) |W(u)] = t

u
·W(u) .

Next, we compute the variance of W(t ) conditioned on W(u) as follows:

Var[W(t ) |W(u)] = E
[(

W(t )−E[W(t ) |W(u)]
)2 |W(u)

]
= E

[(
W(t )− t

u
·W(u)

)2 |W(u)

]
= E

[(
W(t )− t

u
·W(u)

)2
]

= E
[
W(t )2]− 2t

u
·E[W(t ) ·W(u)]+ t 2

u2
·E[

W(u)2]
= t − 2t 2

u
+ t 2

u2
= t (u − t )

u
.
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Finally, to characterize the distribution of {W(t )} conditioned on W(u) = x, we also need the
covariances:

Cov(W(s),W(t ) |W(u)) = E[W(s) ·W(t ) |W(u)]−E[W(s) |W(u)] ·E[W(t ) |W(u)]

=
∫
R

y ·E[
W(s) |W(t ) = y,W(u)

] ·pW(t )
(
y |W(u)

)
dy − s · t

u2
·W(u)2

=
∫
R

y ·E[
W(s) |W(t ) = y

] ·pW(t )
(
y |W(u)

)
dy − s · t

u2
·W(u)2

=
∫
R

y · s · y

t
·pW(t )

(
y |W(u)

)
dy − s · t

u2
·W(u)2

= s

t
·E[

W(t )2 |W(u)
]− s · t

u2
·W(u)2

= s

t
· (Var[W(t ) |W(u)]+E[W(t ) |W(u)]2)− s · t

u2
·W(u)2

= s

t
·
( t (u − t )

u
+ t 2

u2
·W(u)2

)
− s · t

u2
·W(u)2

= s(u − t )

u
,

where pW(t )(·) is the probability density function of W(t ).
In summary, the Brownian bridge has a distribution with the above properties. Now it is natural
to define the following standard Brownian bridge given these properties.

Definition 7 (Standard Brownian Bridge). A stochastic process {X (t )}t≥0 is called a standard
Brownian bridge, if {X (t )} ends at X (1) = 0, that is,

1. X (0) = X (1) = 0;

2. Cov(X (s), X (t )) = s(1− t ).

Remark. We now construct a standard Brownian bridge. Let

X (t )≜W(t )− t ·W(1) .

Then we claim that {X (t )} is a standard Brownian bridge.

Example 8. [Hitting Probability in a Brownian Bridge] Recall that

τb ≜ inf{t ≥ 0 : W(t ) > b} .

Nowwe are interested in Pr[τb < u |W(u) = x], namely, the probability of hitting b before ending
at W(u) = x. Clearly, if b ≤ x, then τb ≤ u. So we assume that b > x.
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Note that
Pr[τb < u |W(u) = x] = Pr[τb < u ∧W(u) = x]

Pr[W(u) = x]
.

Informally, let dx denote the interval [x, x +h] as h is an infinitesimal. So we are interested in
Pr[τb < u ∧W(u) ∈ dx]

Pr[W(u) ∈ dx]
. (1)

We now compute the denominator and numerator respectively. Since W(u) ∼N(0,u), we obtain
that

1p
u

·W(u) ∼N(0,1) .

Hence, the denominator is

Pr[W(u) ∈ dx] = Pr
[

1p
u

·W(u) ∈ dxp
u

]
=Φ

( dxp
u

)
= 1p

u
·φ

( xp
u

)
dx (2)

where
φ(x) = 1p

2π
·e−x2/2

is the probability density function of the standard normal distribution. Applying the reflection
principle, the numerator is

Pr[τb < u ∧W(u) ∈ dx] = Pr[τb < u] ·Pr[W(u) ∈ dx | τb < u]

= Pr[τb < u] ·Pr[W(u) ∈ 2b −dx | τb < u]

= Pr[τb < u ∧W(u) ∈ 2b −dx]

= Pr[W(u) ∈ 2b −dx]

= 1p
u

·φ
(2b −xp

u

)
dx . (3)

Plugging (2) and (3) into (1) we conclude that

Pr[τb < u |W(u) = x] = exp
(
−2b(b −x)

u

)
.

Example 9 (Kolmogorov–Smirnov test). Suppose there is an oracle that claims to be able to gen-
erate random numbers. We would like to check if it is indeed a random number generator.
Suppose that U1,U2, . . . ∈ [0,1] are sampled from distribution F (by the oracle) where F is the
cumulative distribution function. Our goal is to determine whether F (t ) = t holds for all 0 < t < 1.
Let

Fn(t ) = 1

n
·

n∑
i=1

1[Ui<t ] .

Then the algorithm (Kolmogorov–Smirnov test) outputs
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• reject, if F (t )− t ≥ b for some t ∈ [0,1];

• accept, otherwise.

Now the problem is to determine the minimun value of b to make the probability of failure suffi-
ciently small (i.e., < 1/100). We further assume that F (t ) = t , and we hope the algorithm output
accept.
Applying the central limit theorem, Fn(t ) has a normal distribution with mean t as n goes to
infinity. For fixed t , we have

Var
[
1[Ui<t ]

]= t (1− t ) .

Now let
Xn(t )≜

p
n · (Fn(t )− t ) .

By the central limit theorem, it follows that

Xn(t )
D−→N

(
0, t (1− t )

)
.

In fact, using the high dimensional central limit theorem, we further obtain that

(
Xn(t1), Xn(t2)

)T D−→N
(
0, t1(1− t2)

)
where t1(1− t2) is the covariance of Xn(t1) and Xn(t2) since

Cov
(
1[U<t1],1[U<t2]

)= E
[
1[U<t1] · 1[U<t2]

]− t1 · t2

= t1 − t1 · t2 = t1(1− t2) .

Thus, it implies that

(
Xn(t1), Xn(t2), . . . , Xn(tk )

)T D−→ (
Wn(t1),Wn(t2), . . . ,Wn(tk )

)T
where Wn(t ) is a standard Brownian bridge. Using the result in Example 8, we conclude that

Pr[Fn(t )− t ≥ b] = exp
(−2b2) ,

and hence we could obtain the minimun value of b by solving the inequality exp
(−2b2

)< 1/100.
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