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1 Review of the Optional Stopping Theorem

Suppose that a stochastic process {X,},>0 is defined on a filtration {F},>0. Then {X},} is called a
1. Martingale if E[X,,41 | T ] = Xp;
2. Supermartingale if E[ X, | T,] < Xj;
3. Submartingale if E[X},1; | F,] > X,,.

If {X,,} is a martingale with respect to a filtration {J,}, applying the law of total expectation we

have E[X,,] = E[X(] for all fixed n=0. So we wonder what happens if n is a random variable.

Theorem 1 (Optional Stopping Theorem). Suppose that {X,} is a martingale with respect to a fil-
tration {J,} and T is a stopping time with respect to the same filtration. Then E[X;] = E[Xo] if at leat
one of the following holds

1. 7 is bounded;

2. Pr[t <oo] =1 and AM such that | X,| < M foralln<t;

3. E[r] <oo and 3 c such that E[| X471 — Xul 1Tl <c foralln<rt.

Remark. If {X,} is a supermartingale (or submartingale), and at least one of the conditions holds,
then the result holds as well, namely, E[X;] < E[X(] (or E[X;] > E[X(]).

2 Supermartingale Convergence

Today we are talking about supermartingales.

For a supermartingale, it always holds that E[X,+1 | F,] < E[X,]. So intuitively, the trend of a
supermartingale should be declining. Since every decreasing and bounded below sequence of
real numbers is convergent, hopefully {X}} should also converge with probability 1 if {X},} is a

nonnegative supermartingale.



Figure 1: A possible figure of a supermartingale

Now we are going to formalize this idea.

Proposition 2. Suppose that {X,} is a nonnegative supermartingale with Xy < a. For all b > a,
define Ty, by
Ty £ inf{t: X; = b}.

Then it holds that

Pr(T}, <oo] <

SN

Proof. Let

aAbZmin{a, b},

aVv bZmaxia,b}.

Fix £ > 0. Clearly T}, At is a stopping time. It is an exercise to verify that the condition of optional

stopping theorem is satisfied. Therefore, applying the optional stopping theorem, it follows that
[E[XTb/\t] <E[Xpl<a.

On the other hand,
X, if Tp>t;
XTb/\t =
=b, ifT,<t.
So we obtain that
Xryat = b-Tiry<n,
which implies that
[E[XTbl\t] =b-Pr[T, <1t].

Combining with [E[XTb,\ t] < a we conclude that Pr[T} < t] < a/b for all £ > 0. ]
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We are ready to show the following theorem.
Theorem 3. Any nonnegative supermartingale converges with probability 1.

Proof. Assume that a supermartingale is divergent. Then there are two cases. One is that there
exists a subsequence goes to infinity, and another is that there exists an oscillating subsequence.
If there exists a subsequence goes to infinity with probability > 0, then for every b > 0, the prob-
ability of inf{z: X; = b} < oo is greater than 0, which contradicts Proposition 2. So it suffices to
show that oscillation does not exist.

Suppose that a supermartingale {X,,} has two subsequence that converge to different values a
and b. W.lo.g. we further assume that a < b. Let € < (b— a)/2. Then there exists a subsequence
of {X,} bounded above by a’ £ a4+ ¢ and exists a subsequence bounded below by b’ £ ph—e. We

now show that this situation happens with probability 0.

Figure 2: An oscillating sequence

Fix a < b arbitrarily. We define the following stopping times. Let
TO = 0)
Si=inf{t:t>ToAX; < a},
Ty =inf{t:t> 8, A X; = b},
So=inf{t:t> T A X; < a},

Since Sy < T} for all k €N, the optional stopping theorem implies that for all n e N,

[E[XSkAl’l] = [E[XTkl\n] 0 (1)
Note that
>b, if Tp<n;
XT]c/\I’l =
X,, if Tx>n.



So it follows that
Xtan Z b Nireem + Xn- (L= Tiz2m),

and hence

E[TxAn]l=b-Pr[Ty<n]+ X, -(1-Pr[Tr<n]). (2)

Using the same argument we obtain
ElSxAn]l<a-Pr(Sy<n]l+X,-(1—-Pr[Six<n)). (3)
Plugging (2) and (3) into (1) and using the fact Sy < Ty, we have

a-Pr(Sp<nl+X,-Q-=Pr(Sx<n))=b-Pr(Ti<n]l+X,-(1—-Pr[T} <n))

- a-Pr(Sy<n]=b-Pr(Tr<nl+ X, -Pr[Sr<n]—Pr[Tr<n))
- a-Pr(S<n]=b-Pr[T; <nj

= Pr[T} < n] S%-Pr[Sksn]

=

Pr(Ty < oo] < %-Pr[Sk <o0].
Since Sy > Ty_,, it implies that for all k e N,

Pr[Ti < ool < — - Pr[Tj_; <o) .

SR

Taking the limit to the both sides, we conclude that V & > 0, there exists n € N s.t. Pr[T),, <oo] <e&.
O

3 Stochastic Approximation

We now consider an important application of supermartingales. This example is called stochastic
approximation.

Suppose a function f: R — R has an unknown unique zero point (w.Lo.g. we further assume that
f(0) =0 but we do not know). To find the zero point we could use the binary search. However
we do not know the exact value of f. Every time we ask an oracle for the value of f at some
point x, it returns a number f(x) = f(x) + 1 instead. Here 7 is a random variable with E[n] =0
and Var [n] = 1.

Suppose that f(x) >0 if x > the zero point and f(x) <0 if x < the zero point. Then we guess the

value of the zero point. Denote our guesses by a sequence Xy, Xj, X2,.... Given X, the oracle
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returns Y;, = f(Xn) = f(X,)+n, and we let X4 = X, — ay, - Y, where a,, is to be determined. We
hope that X;, — 0 (the true zero point) with probability 1.

Now our goal is to determine a,,. Intuitively a necessary condition is that a, — 0 as n — co and
a, should not decrease too fast. Formally the following theorem tells us under which condition

we will obtain X;, — 0.

Theorem 4 (Stochastic Approximation). Let f: R — R and Xy, X1, Xo,..., Yo, Y1, Ys,... are two se-

quences of random variables such that E[(Xo)?] < oo and

Yn:f(Xn)"'nn;
Xpr1=Xn—an-Yy.

Then X;,, — 0 as n — 0 if the followings hold
1. Xo9,1m1,M2,... are independent; [E[ﬂi] =0, and Var [ni] =1;
2. |f(x)| < c-1x| for some ¢ > 1; (Lipschitz condition)
3. Y6 >0,infjy55 x- f(x) >0;

4 a,=0,Y a,=o0 buty a < oo.

Proof. We would like to construct a supermartingale. To achieve this goal, we first compute

X2, Xon|- By E[nn] =0, E[n%] =1 and | f(x)| < clx|, we have that

E| X |X0n

(Xn - an(f(Xn) + nn))z | YO,n]

— [E[Zaan(f(Xn) +1n) |X0,n

n+1

+E| @ (F () + 1) | Ko

= X2 = 2a, Xnf(Xp) + afl([E[f(Xn)z | Xo.n

+1]
< X2+ a5(* X5+ )

= (a3 +1) X2+ d’c”.

Now, it is clear to justify that {Wn £ bn(X,% + 1)} =0 18 supermartingale with respect to {X},},

where b, is given by
b2 10+ )

Applying Theorem 3, it follows that

lim W, =¢ for some £ > 0.

n—oo



Note that
X2+1

W, = .
" HZ;%(I ie aicz)

. 22 .
Since 1 + aic2 < e%“ | we obtain that
n-1
2 2
[T(1+a2c?) e X%
k=1
converge as n — oo. Therefore {X,zl} n=0 1s convergent.

We now show that X,, — ¢ for some 6 > 0 with positive probability is impossible. Fix § > 0.

vV m >0, we define the following bad event. Let

BmE () {XneD}

n=zm
where D £ {x:|x| > &}. It is sufficient to show Pr[B,,] = 0 for all m.

By Condition 3, there exists € > 0 s.t. infyep x- f(x) = €. So we obtain that
Xn- f(Xp) z€-Nix,ep -
Taking the expectation to the both sides, it implies that
E[X, - f(Xn)] =€ -Pr[X, € D] =€ -Pr[B,].
Recall that {W,} is a supermartingale, and we further have (by the computation above) that

E

Wn+1 | X0,11] < Wn - 2anbn+1)(n : f(Xn) .
Taking the expectation to the both sides, it yields that

E(Wn+1] < E[Wy] = 2a,by1E[ Xy - f(X5)]
<E[Wgp]-2a,bpi1€-Pr[By]

n
<E[Wm]-2¢ ) arbis1-Pr(Bpl,

k=m

which yields that
E(Wml —EWnl

2e Y _ . Akbpi
The last quantity converges to zero because E[W,,,] — E[W,,+1] is bounded for all n > m, and

0.

Pr(B,,] <

n n n
2¢ Y agbgs1>2¢eby, Y. ak>28-e_022“% Y ap— oo

k=m k=m k=m

as n — oo (since Y. ai converges and ) ay — oco). That completes our proof. [



4 Introduction to Brownian Motion

Brownian motion describes the random motion of small particles suspended in a liquid or in a
gas. This process was named after the botanist Robert Brown, who observed and studied a jittery
motion of pollen grains suspended in water under a microscope. Later, Albert Einstein gave a
physical explanation of this phenomenon.

In mathematics, Brownian motion is characterized by the Wiener process, named after Norbert
Wiener, a famous mathematician and the originator of cybernetics. Consider a uniform one-
dimensional random walk starting from 0. Denote by X; the i-th step. Then X; is a uniform
random variable in {—1,+1}. Now suppose that each time unit At we take a step of length 6. Let
X (t) be our position at time ¢. So it holds that

X()=6-(X1+Xo++Xe/az)-

Now we are interested in what happens if At and § — 0. Since E[X;] = 0 and Var [X;] = 1, we have
that

E[X ()] =0

t
_ 2.
Var[X ()] =0 N

We would like to obtain a non-trivial stochastic process, so a natural idea is to fix 8%2/Attobea
constant. Let

0=0-VAt
for some constant o > 0. Thus Var [X(#)] = o ¢. The next question is what the distribution of X (f)

is? The central limit theorem tells us X (¢) has a normal distribution N (0, o).

Theorem 5 (Central Limit Theorem). Suppose that Xy, X>..., is a sequence of i.i.d. random variables

with mean u and variance 0. Then for n — oo, it holds that

Y Xi—nu

~N(0,1).
ovn O
Or equivalently,
lim Pr Z’L ] f e ¥ 2dx.
n—oo 0’ A /27[

Let Y; = §X; in our setting. Then Var[Y;] = 0?At. Applying the central limit theorem, it follows
that

tIAt
X(t) = Z Y ~ 0%At- \/ N(O 1) =N(©,0°1)

k=
as At — 0. This argument gives an intuition of Wiener process. We now formalize the definition.



Definition 1 (Brownian Motion (Wiener Process)). A stochastic process {X(#)};>¢ is said to be a

Brownian motion if
« X(0)=0.

« Independent increments. VO=1f< 1) <:-- < 1y,
X(tp) = X(tp-1), X(tp-1)—X(ty-2), ..., X(r)—X(1)

are independent.

« Stationary increments. Vi,s > 0, X(f+s) — X(f) only depends on s, and has a normal

distribution N'(0,g2s) for some constant .

o X(1t) is continuous.
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