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1 Review of the Optional Stopping Theorem

Suppose that a stochastic process {Xn}n≥0 is defined on a filtration {Fn}n≥0. Then {Xn} is called a

1. Martingale if E[Xn+1 |Fn] = Xn ;

2. Supermartingale if E[Xn+1 |Fn] < Xn ;

3. Submartingale if E[Xn+1 |Fn] > Xn .

If {Xn} is a martingale with respect to a filtration {Fn}, applying the law of total expectation we
have E[Xn] = E[X0] for all fixed n ≥ 0. So we wonder what happens if n is a random variable.

Theorem 1 (Optional Stopping Theorem). Suppose that {Xn} is a martingale with respect to a fil-

tration {Fn} and τ is a stopping time with respect to the same filtration. Then E[Xτ] = E[X0] if at leat

one of the following holds

1. τ is bounded;

2. Pr[τ<∞] = 1 and ∃M such that |Xn | ≤ M for all n < τ;

3. E[τ] <∞ and ∃c such that E[|Xn+1 −Xn | |Fn] ≤ c for all n < τ.

Remark. If {Xn} is a supermartingale (or submartingale), and at least one of the conditions holds,
then the result holds as well, namely, E[Xτ] < E[X0] (or E[Xτ] > E[X0]).

2 Supermartingale Convergence

Today we are talking about supermartingales.
For a supermartingale, it always holds that E[Xn+1 |Fn] < E[Xn]. So intuitively, the trend of a
supermartingale should be declining. Since every decreasing and bounded below sequence of
real numbers is convergent, hopefully {Xn} should also converge with probability 1 if {Xn} is a
nonnegative supermartingale.
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Figure 1: A possible figure of a supermartingale

Now we are going to formalize this idea.

Proposition 2. Suppose that {Xn} is a nonnegative supermartingale with X0 ≤ a. For all b > a,

define Tb by

Tb ≜ inf {t : X t ≥ b}.

Then it holds that

Pr[Tb <∞] ≤ a

b
.

Proof. Let

a ∧b ≜min{a,b} ,

a ∨b ≜max{a,b} .

Fix t > 0. Clearly Tb∧t is a stopping time. It is an exercise to verify that the condition of optional
stopping theorem is satisfied. Therefore, applying the optional stopping theorem, it follows that

E
[

XTb∧t
]< E[X0] ≤ a .

On the other hand,

XTb∧t =

X t , if Tb > t ;

≥ b , if Tb ≤ t .

So we obtain that
XTb∧t ≥ b · 1[Tb≤t ] ,

which implies that
E
[

XTb∧t
]≥ b ·Pr[Tb ≤ t ] .

Combining with E
[

XTb∧t
]≤ a we conclude that Pr[Tb ≤ t ] ≤ a/b for all t > 0.
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We are ready to show the following theorem.

Theorem 3. Any nonnegative supermartingale converges with probability 1.

Proof. Assume that a supermartingale is divergent. Then there are two cases. One is that there
exists a subsequence goes to infinity, and another is that there exists an oscillating subsequence.
If there exists a subsequence goes to infinity with probability > 0, then for every b > 0, the prob-
ability of inf{t : X t ≥ b} <∞ is greater than 0, which contradicts Proposition 2. So it suffices to
show that oscillation does not exist.
Suppose that a supermartingale {Xn} has two subsequence that converge to different values a

and b. W.l.o.g. we further assume that a < b. Let ε< (b −a)/2. Then there exists a subsequence
of {Xn} bounded above by a′ ≜ a +ε and exists a subsequence bounded below by b′ ≜ b −ε. We
now show that this situation happens with probability 0.

b

a

Figure 2: An oscillating sequence

Fix a < b arbitrarily. We define the following stopping times. Let

T0 = 0,

S1 = inf {t : t > T0 ∧X t ≤ a},

T1 = inf {t : t > S1 ∧X t ≥ b},

S2 = inf {t : t > T1 ∧X t ≤ a},

· · · · · ·

Since Sk ≤ Tk for all k ∈N, the optional stopping theorem implies that for all n ∈N,

E
[

XSk∧n
]≥ E

[
XTk∧n

]
. (1)

Note that

XTk∧n =

≥ b , if Tk ≤ n ;

Xn , if Tk > n .
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So it follows that
XTk∧n ≥ b · 1[Tk≤n] +Xn · (1− 1[Tk≤n]

)
,

and hence
E[Tk ∧n] ≥ b ·Pr[Tk ≤ n]+Xn · (1−Pr[Tk ≤ n]) . (2)

Using the same argument we obtain

E[Sk ∧n] ≤ a ·Pr[Sk ≤ n]+Xn · (1−Pr[Sk ≤ n]) . (3)

Plugging (2) and (3) into (1) and using the fact Sk < Tk , we have

a ·Pr[Sk ≤ n]+Xn · (1−Pr[Sk ≤ n]) ≥ b ·Pr[Tk ≤ n]+Xn · (1−Pr[Tk ≤ n])

=⇒ a ·Pr[Sk ≤ n] ≥ b ·Pr[Tk ≤ n]+Xn · (Pr[Sk ≤ n]−Pr[Tk ≤ n])

=⇒ a ·Pr[Sk ≤ n] ≥ b ·Pr[Tk ≤ n]

=⇒ Pr[Tk ≤ n] ≤ a

b
·Pr[Sk ≤ n]

=⇒ Pr[Tk ≤∞] ≤ a

b
·Pr[Sk ≤∞] .

Since Sk > Tk−1, it implies that for all k ∈N,

Pr[Tk ≤∞] ≤ a

b
·Pr[Tk−1 ≤∞] .

Taking the limit to the both sides, we conclude that ∀ε> 0, there exists n ∈N s.t. Pr[Tn <∞] < ε.

3 Stochastic Approximation

We now consider an important application of supermartingales. This example is called stochastic

approximation.
Suppose a function f : R→R has an unknown unique zero point (w.l.o.g. we further assume that
f (0) = 0 but we do not know). To find the zero point we could use the binary search. However
we do not know the exact value of f . Every time we ask an oracle for the value of f at some
point x, it returns a number f̃ (x) = f (x)+η instead. Here η is a random variable with E

[
η
] = 0

and Var
[
η
]= 1.

Suppose that f (x) > 0 if x > the zero point and f (x) < 0 if x < the zero point. Then we guess the
value of the zero point. Denote our guesses by a sequence X0, X1, X2, . . .. Given Xn , the oracle
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returns Yn = f̃ (Xn) = f (Xn)+ηn and we let Xn+1 = Xn −an ·Yn where an is to be determined. We
hope that Xn → 0 (the true zero point) with probability 1.
Now our goal is to determine an . Intuitively a necessary condition is that an → 0 as n →∞ and
an should not decrease too fast. Formally the following theorem tells us under which condition
we will obtain Xn → 0.

Theorem 4 (Stochastic Approximation). Let f : R→ R and X0, X1, X2, . . ., Y0,Y1,Y2, . . . are two se-

quences of random variables such that E
[
(X0)2

]<∞ and

Yn = f (Xn)+ηn ,

Xn+1 = Xn −an ·Yn .

Then Xn → 0 as n → 0 if the followings hold

1. X0,η1,η2, . . . are independent; E
[
ηi

]= 0, and Var
[
ηi

]= 1;

2.
∣∣ f (x)

∣∣< c · |x| for some c > 1; (Lipschitz condition)

3. ∀δ> 0, inf|x|>δ x · f (x) > 0;

4. an ≥ 0,
∑

an =∞ but
∑

a2
n <∞.

Proof. We would like to construct a supermartingale. To achieve this goal, we first compute
E
[

X 2
n+1 | X 0,n

]
. By E

[
ηn

]= 0, E
[
η2

n

]= 1 and
∣∣ f (x)

∣∣< c|x|, we have that

E
[

X 2
n+1 | X 0,n

]
= E

[(
Xn −an( f (Xn)+ηn)

)2 | X 0,n

]
= E

[
X 2

n | X 0,n

]
−E

[
2an Xn( f (Xn)+ηn) | X 0,n

]
+E

[
a2

n( f (Xn)+ηn)2 | X 0,n

]
= X 2

n −2an Xn f (Xn)+a2
n

(
E
[

f (Xn)2 | X 0,n

]
+1

)
≤ X 2

n +a2
n

(
c2X 2

n + c2)
= (

a2
nc2 +1

)
X 2

n +a2
nc2 .

Now, it is clear to justify that
{
Wn ≜ bn

(
X 2

n + 1
)}

n≥0 is supermartingale with respect to {Xn},
where bn is given by

bn ≜
n−1∏
k=1

(
1+a2

k c2)−1 .

Applying Theorem 3, it follows that

lim
n→∞Wn = ξ for some ξ> 0.
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Note that
Wn = X 2

n +1∏n−1
k=1

(
1+a2

k c2
) .

Since 1+a2
k c2 ≤ ea2

k c2 , we obtain that
n−1∏
k=1

(
1+a2

k c2)≤ ec2 ∑
a2

k

converge as n →∞. Therefore {X 2
n}n≥0 is convergent.

We now show that Xn → δ for some δ > 0 with positive probability is impossible. Fix δ > 0.
∀m > 0, we define the following bad event. Let

Bm ≜
⋂

n≥m
{Xn ∈ D}

where D ≜ {x : |x| > δ}. It is sufficient to show Pr[Bm] = 0 for all m.
By Condition 3, there exists ε> 0 s.t. infx∈D x · f (x) ≥ ε. So we obtain that

Xn · f (Xn) ≥ ε · 1[Xn∈D] .

Taking the expectation to the both sides, it implies that

E
[

Xn · f (Xn)
]≥ ε ·Pr[Xn ∈ D] ≥ ε ·Pr[Bm] .

Recall that {Wn} is a supermartingale, and we further have (by the computation above) that

E
[

Wn+1 | X 0,n

]
<Wn −2anbn+1Xn · f (Xn) .

Taking the expectation to the both sides, it yields that

E[Wn+1] < E[Wn]−2anbn+1E
[

Xn · f (Xn)
]

< E[Wn]−2anbn+1ε ·Pr[Bm]

< E[Wm]−2ε
n∑

k=m
ak bk+1 · Pr[Bm] ,

which yields that
Pr[Bm] ≤ E[Wm]−E[Wn+1]

2ε
∑n

k=m ak bk+1
−→ 0.

The last quantity converges to zero because E[Wm]−E[Wn+1] is bounded for all n > m, and

2ε
n∑

k=m
ak bk+1 > 2εbn

n∑
k=m

ak > 2ε ·e−c2 ∑
a2

k

n∑
k=m

ak →∞

as n →∞ (since ∑
a2

k converges and ∑
ak →∞). That completes our proof.
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4 Introduction to Brownian Motion

Brownian motion describes the random motion of small particles suspended in a liquid or in a
gas. This process was named after the botanist Robert Brown, who observed and studied a jittery
motion of pollen grains suspended in water under a microscope. Later, Albert Einstein gave a
physical explanation of this phenomenon.
In mathematics, Brownian motion is characterized by the Wiener process, named after Norbert
Wiener, a famous mathematician and the originator of cybernetics. Consider a uniform one-
dimensional random walk starting from 0. Denote by Xi the i -th step. Then Xi is a uniform
random variable in {−1,+1}. Now suppose that each time unit ∆t we take a step of length δ. Let
X (t ) be our position at time t . So it holds that

X (t ) = δ · (X1 +X2 +·· ·+X t/∆t
)

.

Nowwe are interested in what happens if ∆t and δ→ 0. Since E[Xi ] = 0 and Var [Xi ] = 1, we have
that

E[X (t )] = 0,

Var [X (t )] = δ2 · t

∆t
.

We would like to obtain a non-trivial stochastic process, so a natural idea is to fix δ2/∆t to be a
constant. Let

δ=σ ·
p
∆t

for some constant σ> 0. Thus Var [X (t )] =σ2t . The next question is what the distribution of X (t )

is? The central limit theorem tells us X (t ) has a normal distribution N(0,σt ).

Theorem 5 (Central LimitTheorem). Suppose that X1, X2 . . . , is a sequence of i.i.d. random variables

with mean µ and variance σ2. Then for n →∞, it holds that∑
Xi −nµ

σ
p

n
∼N(0,1) .

Or equivalently,

lim
n→∞Pr

[∑n
i=1 Xi −nµ

σ
p

n
≤ a

]
= 1p

2π

∫a

−∞
e−x2/2 dx .

Let Yi = δXi in our setting. Then Var [Yi ] =σ2∆t . Applying the central limit theorem, it follows
that

X (t ) =
t/∆t∑
k=1

Yk ∼σ2∆t ·
√

t

∆t
·N(0,1) =N(0,σ2t )

as ∆t → 0. This argument gives an intuition of Wiener process. We now formalize the definition.
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Definition 1 (Brownian Motion (Wiener Process)). A stochastic process {X (t )}t≥0 is said to be a
Brownian motion if

• X (0) = 0.

• Independent increments. ∀0 = t0 < t1 < ·· · < tn ,

X (tn)−X (tn−1), X (tn−1)−X (tn−2), . . . , X (t1)−X (t0)

are independent.

• Stationary increments. ∀ t , s > 0, X (t + s)− X (t ) only depends on s, and has a normal
distribution N(0,σ2s) for some constant σ.

• X (t ) is continuous.
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