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1 Introduction to Martingale

Today we are talking about a kind of interesting stochastic process. Consider a fair gambling
game. After each round, the expectation of our money is the same as before. This stochastic
process is a martingale.

Definition 1 ((Discrete) Martingale (鞅)). A (discrete) stochastic process {Xn}n≥0 is a martingale

if
∀n ≥ 0, E[Xn+1 | X0, . . . , Xn] = Xn .

We would like to generalize this definition slightly. For convenience, from now on we will use
X 0,n = (X0, . . . , Xn) to simplify our notations.

Definition 2. Suppose {Xn}n≥0 and {Zn}n≥0 are two stochastic processes. We say {Zn}n≥0 is a
martingale with respect to {Xn}n≥0 if

∀n ≥ 0, E
[

Zn+1 | X 0,n

]
= Zn .

Remark. Definition 1 is consistent with Definition 2 if we take Xn the same as Zn in Definition 2.
So {Xn}n≥0 is a martingale if {Xn}n≥0 is a martingale with respect to itself.

Definition 3 (Martingale (defined by σ-algebra)). Given a stochastic process {Xn}n≥0, let Fn =
σ(X0, . . . , Xn) be the minimum σ-algebra generated by X 0,n . Then {Fn}n≥0 satisfies

F0 ⊆F1 ⊆F2 ⊆ ·· · ⊆Fn ⊆Fn+1 ⊆ ·· · .

In particular, a sequence of σ-algebra {Fn}n≥0 satisfying the above condition is called a filtration.
We say {Zn}n≥0 is a martingale with respect to a filtration {Fn}n≥0 if

1. ∀n ≥ 0, Zn is Fn-measurable;

2. E[Zn+1 |Fn] = Zn .
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Example 4 (One-dimensional Random Walk). Consider a random walk on Z starting from 0. The
probability to left and the probability to right are both 1/2 at each step. Denote by a uniform
random variable Xn ∈ {−1,+1} the n-th step. Let Zn = ∑n

i=1 Xn . Then {Zn} is a martingale with
respect to {Xn}.
It is easy to verify that

1. Zn is measurable given the σ-algebra σ(X 0,n);

2. E
[

Zn+1 | X 0,n

]
= E

[
Zn +Xn+1 | X 0,n

]
= Zn +E

[
Xn+1 | X 0,n

]
= Zn .

Remark. Taking the expectation of the both sides of E
[

Zn+1 | X 0,n

]
= Zn and applying the law of

total expectation we obtain that E[Zn+1] = E[Zn].

Example 5 (Branching Process). Suppose that all the individuals reproduce independently of each
other and have the same offspring distribution. Let Zn be the number of individuals of the n-
th generation. Each individual of generation n gives birth to a random number of children of
generation n + 1. Denote by Xn,i the number of children of the i -th individual. We further
assume that Xn,i are i.i.d. random variables with E

[
Xn,i

]=µ.
By assumption we have E[Zn+1 |Fn] = E[Zn+1 | Zn]. Furthermore,

E[Zn+1 | Zn = z] = E

[
z∑

i=1
Xn,i | Zn = z

]
=µ · z .

What we want is to construct a martingale. So we should scale Zn . Let Mn = µ−n · Zn . The
calculation above justifies that

E[Mn+1 |Fn] =µ−(n+1) ·µ ·Zn = Mn .

Remark. In the definition of martingale (such as Definition 3), it is required that E[Zn+1 |Fn] = Zn .
However, sometimes the stochastic process that we are studying might not satisfy this condition
but it still has some important properties and is still widely applied. So we define the following
two kinds of stochastic processes as well: If the condition is E[Zn+1 |Fn] ≥ Zn for all n ≥ 0 then it
is called a submartingale (下鞅); if the condition is E[Zn+1 |Fn] ≤ Zn for all n ≥ 0 then it is called
a supermatingale (上鞅).

Example 6 (Pólya’s Urn). Suppose there are some white balls and black balls in an urn. All of
these balls are identical except the colors. Consider the following stochastic process: each round
we pick a ball uniformly at random and observe its color; then we return the ball, and add an
additional ball of the same color into the urn. We repeat the process, and our goal is to study the
sequence of colors of the selected balls.
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W.l.o.g. assume that we start from only one white ball and one black ball in the urn, and the index
of rounds starts from 3. Then after round n, there are exactly n balls in the urn. Let Xn be the
number of white balls after round n, and Zn = Xn/n is the ratio of white balls after round n. We
claim that Zn is a martingale.
Clearly Z2 = 1/2 and E[Zn] = 1/2 since white balls and black balls are symmetric. We now com-
pute E

[
Zn+1 | X 2,n

]
. Note that at round n +1, we pick a white ball with probability Zn . Thus,

E
[

Zn+1 | X 2,n

]
= 1

n +1
·E

[
Xn+1 | X 2,n

]
= 1

n +1
· (Zn · (Xn +1)+ (1−Zn) ·Xn

)
= 1

n +1
· (Xn +Zn) = Zn . (1)

Example 7 (Likelihood Ratio). Suppose there is a sequence of numbers X1, X2, . . . , Xn , . . . indepen-
dently chosen from an unknown distribution f . We guess that their have distribution g . Then
the likelihood ratio of our guess is defined by

Mn ≜ g (x1) · g (x2) · · · · · g (xn)

f (x1) · f (x2) · · · · · f (xn)
.

We claim that {Mn} is a martingale with respect to X 0,n .
In fact, by independence, it is clear to verify that

E
[

Mn+1 | X 1,n

]
= Mn ·E

[
g (Xn+1)

f (Xn+1)
| X 1,n

]
= Mn ·E

[
g (Xn+1)

f (Xn+1)

]
= Mn ·∑

x
Pr[Xn+1 = x] · g (x)

f (x)

= Mn ·∑
x

g (x) = Mn .

2 Stopping Time

Question. We’ve already known that ∀n ≥ 0, E[Zn] = E[Z0]. However, if τ is a random variable,
could we conclude that E[Zτ] = E[Z0]?

Unfortunately the answer is “no”! For example, consider a one-dimensional randomwalk starting
from 0. Let Zn be the position after the n-th step, and τ be the first time that Zτ = 1. It is clear
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that E[Zτ] = 1 ̸= Z0. Another example is to define τ as argmax1≤t≤100 |Zt |, the time to reach the
furthest position in the first 100 steps. Obviously we have E[Zτ] > 0 = Z0.
To answer our question, and determine under which condition we could conclude E[Zτ] = E[Z0],
let’s formalize stopping time first.

Definition 8 (Stopping Time). Let τ ∈N is a random variables. We say τ is a stopping time defined
on a filtration {Fn}n≥0 if

∀n ∈N , 1[τ≤n] is Fn-measurable .

In other words, for every n the event {τ≤ n} is in Fn .

Now consider the filtration generated by a stochastic process {Xn}n≥0. We say τ is a stopping
time if the proposition [τ≤ n] is determined by X 0,n for all n.

Theorem 1 (Optional Stopping Theorem). Suppose that {Xn} is a martingale with respect to a fil-

tration {Fn} and τ is a stopping time with respect to the same filtration. Then E[Xτ] = E[X0] if at leat

one of the following holds

1. τ is bounded;

2. Pr[τ<∞] = 1 and ∃M such that |Xn | ≤ M for all n < τ;

3. E[τ] <∞ and ∃c such that E[|Xn+1 −Xn | |Fn] ≤ c for all n < τ.

The proof of the optional stopping theorem is left as an exercise. We now introduce some exam-
ples and applications of this theorem.

Example 9 (Sex Ratio). Suppose that in a villiage, every family keeps having children until they
give birth to a boy. If we further assume that the natural birth sex ratio is uniform and every
family only gives birth to a child at a time, what is the birth sex ratio in this villiage?
Fix a family. Let Xn ∈ {−1,+1} denote whether the n-th child is a boy, and Zn = ∑n

i=1 Xi denote
the number of boys more than girls. Then we define τ by τ = min{n : Xn = 1}. Clearly {Zn} is
a martingale with respect to {Xn} and τ is a stopping time. Note that τ is the time of success
in a Bernoulli trial and has a geometric distribution. Thus E[τ] < ∞. Combining with the fact
that |Zn+1 −Zn | = |Xn+1| = 1, it justifies Condition 3 in Theorem 1. So we conclude that E[Zτ] =
E[Z0] = 0 and hence the birth sex ratio in this villiage is still 1 : 1.
Suppose that their strategy has changed. Every family keeps giving birth to children until their
sons are more than their daughters. Then the optional stopping theorem cannot be applied any
longer, since now the stopping time τ has infinite expectation and Zn is unbounded. To see this,
note that τ is the hitting time of 1 in a one-dimensional random walk starting from 0, that is, the
hitting time of a null recurrent state.
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Example 10 (One-Dimensional Random Walk with Two Absorbing Barriers). Consider a one-
dimensional random walk (starting from 0) with two absorbing barriers −a and b. There are two
natural questions:

1. What is the probability of stopping at −a (or b)?

2. What is the expected number of steps before stopping?

0−a b

Solution. Let Xn ∈ {−1,+1} be a uniform random variable, Zn+1 = Zn +Xn , and τ= min{n : Zn =
−a ∨Zn = b}. Then {Zn} is a martingale w.r.t. {Xn}, and τ is a stopping time.
Note that |Zn | is bounded. So, in order to apply the optional stopping theorem, we should prove
that Pr[τ<∞] = 1. Since the probability of ending within the next a +b steps is at least 2−(a+b)

no matter where the current position is, we claim that the random walk ends in finite steps with
probability 1. It follows that E[Zτ] = E[Z0] = 0. That is

−a ·Pr[ending at −a
]+b ·Pr[ending at b

]= 0,

which yields that the probability of ending at −a and the probability of ending at b are b/(a+b)

and a/(a +b), respectively.
We also define {Yn}n≥0 (which is a common trick) by

Yn ≜ Z 2
n −n .

Claim. We claim that {Yn} is a martingale w.r.t. {Xn}.

Now we use Condition 3 in Theorem 1. It implies that E[Yτ] = E[Y0] = 0. By the linearity of
expectation, E[Yτ] = E

[
Z 2
τ

]−E[τ]. It follows that

E[τ] = E
[

Z 2
τ

] = a2 ·Pr[ending at −a
]+b2 ·Pr[ending at b

]
= a2 · b

a +b
+b2 · a

a +b
= ab .

Finally, we prove our claim, namely, {Yn} is a martingale with respect to {Xn}. By definition, we
obtain that

E
[

Yn+1 | X 0,n

]
= E

[
Z 2

n+1 − (n +1) | X 0,n

]
= E

[
(Zn +Xn+1)2 − (n +1) | X 0,n

]
= Z 2

n −n −1+2Zn ·E
[

Xn+1 | X 0,n

]
+E

[
X 2

n+1 | X 0,n

]
= Z 2

n −n = Yn ,
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which completes our proof.

Example 11 (Pattern Matching). Suppose that there is a {H,T}-string P of length ℓ. We flip a coin
consecutively until the last ℓ results form exactly the same string as P . How many times do we
flip the coin?
Note that if we flip the coin N times and observe the string consisting of N results. No matter
which pattern we choose, the expected number of occurrence (i.e., expected number of substrings
exactly the same as P of the resulting string) is (N −ℓ+1)/2ℓ (by the linearity of expectation).
However, if we would like to compute the first time that pattern P occurs, the pattern itself has
an impact on the expected time.
Intuitively, let’s consider two patternsHT andHH. Assume that the first flipping result isH. Then
we consider what happens if the second result fails. Suppose that the desired pattern isHT andH
appears. Altough we fail, we obtain an H. However, if the desired pattern is HH and the second
flipping result is T, then we obtain nothing and the first two flips are a waste. So we should
believe that the expected times of the first occurrence of these two patterns are different.
We now use the optional stopping theorem to solve this problem. Let P = p1p2 . . . pℓ. For every
n ≥ 0, assume that before (n +1)-th flipping there is a new gambler Gn+1 coming with 1 unit of
money to bet that the following ℓ result (i.e., the (n +1)-th to (n +ℓ)-th results) are exactly the
same as P . At the (n+k)-th flipping, Gn+1 will bet that the result is pk by an “all in” strategy, that
is, if the (n +k)-th result is pk then Gn+1 will have twice as much money as before; otherwise
they will lose all. Suppose that the patter P =HTHTH and the flipping results are HTHHTHTH.
The following table shows the total money of each gambler after flipping.

Gambler H T H H T H T H Money
1 H T H T 0 1 → 2 → 4 → 8 → 0

2 H 0 1 → 0

3 H T 0 1 → 2 → 0

4 H T H T H 32 1 → 2 → 4 → 8 → 16 → 32

5 H 0 1 → 0

6 H T H 8 1 → 2 → 4 → 8

7 H 0 1 → 0

8 H 2 1 → 2
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Let X t be the result of t-th flipping, Mi (t ) denote the money that Gi has after t-th flipping, and

Zt =
t∑

i=1
Mi (t )−1

be the total net income of all gamblers after t-th flipping. It is easy to verify that {Mi (t )}t≥0 is a
martingale with respect to {Xn} since

E
[

Mi (t +1) | X 0,n

]
= 1

2
· (2Mi (t ))+ 1

2
·0 = Mi (t ) .

Then by the linearity of expectation we conclude that {Zn} is a martingale with respect to the
flipping results {Xn} since E[Mi (t )] = 0. Let τ be the stopping time defined by the first time
that some gambler wins, namely, the first time that P occurs in the flipping results. Applying
Condition 2 of Theorem 1 we obtain that E[Zτ] = E[Z0] = 0.
We complete our solution by pointing out thatGi lose all for all i ≤ τ−ℓ and Mi (τ) = 2τ−i+1·χτ−i+1

for all τ−ℓ+1 ≤ i ≤ τ, where χ j is defined by

χ j = 1[p1···p j=pℓ− j+1···pℓ] .

Hence,

0 = E[Zτ] =
τ∑

i=1
E[Mi (τ)]−E[τ] =

τ∑
i=τ−ℓ+1

Mi (τ)−E[τ] =
ℓ∑

i=1
χi ·2i −E[τ] .
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