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1 Markov Random Field

Today we are going to talk about a generalization of a type of simple Markov chains — discrete-
time Markov chains with finite state space.
Consider a Markov chain X0 → X1 → X2 → ··· → Xn → ··· . Each X t is a random variable and
determined by X t−1 and the transition probabilities. Furthermore, given X t−1, the value of X t is
independent of X0, . . . , X t−2.
Now we would like to generalize this model. Assume that each X t depends on several others.
We use an undirected graph to describe the dependency among random variables so that the
marginal distribution of Xv only depends on the value of its neighbours. Specifically, we have
the following definition.

Definition 1 (Markov Random Field). Given a graph G = (V ,E) of size |V | = n and the state space
[q], we say a set of random variables X = {Xv }v∈V is a Markov random field with respect to G if
their joint distribution satisfies that

∀ i , ( jw )w∈V \{v}, Pr

[
Xv = i

∣∣∣ ∧
w∈V \{v}

Xw = jw

]
= Pr

[
Xv = i

∣∣∣ ∧
w∈N (v)

Xw = jw

]
,

where N (v) is the set of v ’s neighbours in graph G . In other words, Xv is independent of all other
nonadjacent variables.

Remark. The underlying graph of a Markov random field may be finite or infinite.

A natural question is, given the dependency graph G = (V ,E), how to construct the joint distri-
bution of Xvs so that they become a Markov random field. Clearly if each Xv is independent of
all other variables then they form a Markov random field. But now we would like to design a
nontrivial one.
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For convenience we introduce some notations (probably there are some abuses). Given a distri-
bution µ over x = (xv )v∈V ∈ [q]V and S ⊆V , let xS = (xv )v∈S and

p(xS) = PrX∼µ[XS = xS] for all xS .

We should also mention here that we use {·} to denote unordered tuples (i.e., sets) and use (·) to
denote ordered tuples (i.e., vectors).
Moreover, given x, y ∈ [q]V and S,T ⊆V , let

p(xS | yT ) = PrX∼µ
[

XS = xS | XT = yT
]

.

Suppose that for all v ∈ V and yN (v) ∈ [q]N (v), p( · | yN (v)) is known. Is it possible to recover the
joint distribution µ?
Actually, such a joint distribution may not exist, and it is not difficult to design a counterexample.
So we are going to talk about under which condition the joint distribution exists and is a Markov
random field.

2 Gibbs Distribution and Sampling

We now introduce another description of Markov random fields.

Definition 2 (Gibbs Distribution). Given an underlying graph G = (V ,E) and a state space Ω =
[q]V , a distribution µ on Ω is called the Gibbs distribution, if there exists a family of functions
VA(·) : Ω→R≥0 such that VA(x) only depends on x|A and

∀x, µ(x) = ∏
A⊆V

A is complete

VA(x) ,

where A is a complete set if all vertices in A form a clique, namely, i , j are adjacent for all i , j ∈ A.

Example 3 (Independent set). An independent set in a graph is a set of vertices, no two of which
are adjacent.
The uniform distribution over all independent sets in a graph is a Gibbs distribution.
To see this, we let q = 2 and the state space be {0,1}. Then x is an indicator vector to denote which
variables are chosen to form a set. If p(x) is a constant for every x that indicates an independent
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set, and p(x) = 0 otherwise, µ is a Gibbs distribution. Now we define VA(·) by

VA(x) =



1 if |A| > 2

1[x(i )=0∨x( j )=0] if A = {i , j } for some {i , j } ∈ E

1 if |A| = 1

1/Z if A =;

where Z is the number of all independent sets and thus 1/Z is the normalizing factor.

Generally, consider the following model. For each x ∈ [q]V , let

w(x) = ∏
{i , j }∈E

w{i , j }(x(i ), x( j )) ,

and
µ(x) ∝ w(x) .

In fact, let Z =∑
x w(x). We can define µ(x) by µ(x) = w(x)/Z . We call Z the partition function.

Example 4 (Proper Coloring). A coloring is a configuration c : V → [q]. Then the state space is
Ω = [q]V . A coloring is proper if no two adjacent vertices have the same color, that is, for all
{i , j } ∈ E , c(i ) 6= c( j ).
Let µ be the uniform distribution over all proper colorings. Then µ is a Gibbs distribution.

µ(x) ∝ w(x) = ∏
{i , j }∈E

1x(i )6=x( j ) .

Example 5 (Ising Model). The Ising model has a parameter β> 0. The state space is Ω= {0,1}V .
The weight of each configuration is given by

w(x) =β# of monochromatic edges .

Then the distribution µ(x) ∝ w(x) is a Gibbs distribution.

µ(x) ∝ w(x) = ∏
{i , j }∈E

β1x(i )6=x( j ) .

Theorem 1 (Hammersley–Clifford Theorem). Given an underlying graph G and a distribution µ

on Ω, if

∀x, µ(x) > 0,

then variables {Xv }v∈V with distribution µ(·) is a Markov random field if and only if µ is a Gibbs

distribution.
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The proof is omitted here. Please see our course reference (Chang’s note) for details.
This theorem tells us that Markov random fields could be described by Gibbs distributions.
A natural question is, given VA(·), how to efficiently sample from the Gibbs distribution, or equiv-
alently how to compute those marginal probabilities induced by the distribution. Unfortunately,
this problem is #P-hard. So we turn into considering approximating these values. However, this
task isNP-hard in general. (Formally, this problem is in FPNP, whichmeanswe can approximately
sample in polynomial-time given an NP oracle.)
Nevertheless, if we do not care about the efficiency of the sampler at the moment, there is a simple
sampling algorithm — Metropolis algorithm, which we introduced before.
Consider the following example. We would like to uniformly sample an independent set. Then
we construct a Markov chain where the state space is the set of all independent sets. We start
from X0 = ;. At each step X t , we uniformly pick a vertex v ∈ V and flip a uniform coin. Let
X ′ = X t ∪ {v} if Head is showing and let X ′ = X t \ {v} otherwise. Finally, let X t+1 = X ′ if X ′ is an
independent set and X t+1 = X t otherwise. The correctness of this algorithm is left as an exercise.

3 Hidden Markov Model

Now we consider the hidden Markov model. Suppose there is a Markov chain X0 → X1 → ··· →
Xn → ··· with the initial distribution ξ and transition probabilities A. Each Xi is associated with
a random variable Yi where the transition probabilities are B.

ξ

o
X0

A−→ X1
A−→ X2

A−→ · · · A−→ Xn
A−→ · · ·

↓ B ↓ B ↓ B · · · ↓ B

Y0 Y1 Y2 · · · Yn · · ·

We can observe Yi , but ξ, A, B are all unknown. For example, Xi is the weather of i -th day
(suppose it is unknown!), and Yi is the behavior, such as staying home or going out. Our goal is
to determin ξ, A and B.
Let θ = (ξ,A,B) be our goal, and y = (y0, y1, . . . , yn) be our observation. Formally, our goal is to
find

argmax
θ

Pθ(y) ,
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where Pθ(y) = Pr
[

y | θ]
, and it is clear to see that Pθ(y) =∑

x Pθ(x, y).
We first consider the problem of computing Pθ(y) given θ and y . Here we could use dynamic

programming. So this problem is efficiently solvable. However our goal is much more difficult to
solve. Now we introduce an algorithm to compute argmaxθ Pθ(y)

Example 6 (Expectation Maximization Algorithm). Since y is given, Pθ(y) is a function of θ. Let
L(θ) = Pθ(y). We further have argmaxθ L(θ) = argmaxθ logL(θ).
We start from an initial θ0, and then let

θt+1 = argmax
θ

Eθt

[
logPθ(X , y) | Y = y

]
,

for all t > 0.
Note that y is given, and thus Eθt [·] stands for EX∼θt [·].

We would like to justify the correctness of EM algorithm.

Lemma 2. Eθ0

[
Pθ1 (X , y) | y

]> Eθ0

[
Pθ0 (X , y) | y

] =⇒ Pθ1 (y) > Pθ0 (y).

To prove this lemma, we should introduce KL divergence first.

Definition 7 (KL Divergence). Given two distributions p , q on Ω, KL divergence is a measure of
the distance between p and q , which is given by

DKL(p, q)≜
∑

i
pi · log pi −

∑
i

pi · log qi =
∑

i
pi · log

(pi

qi

)
.

Proposition 3. DKL(p, q) ≥ 0.

Proof. Since pi , qi > 0, applying the inequality log x < x −1, we have that

−DKL(p, q) =∑
i

pi · log
( qi

pi

)
=∑

i
pi ·

( qi

pi
−1

)
=∑

i
qi −pi = 0.

This proof also shows that DKL(p, q) = 0 iff p = q .
Now we are ready to prove Lemma 2.

Proof of Lemma 2. It is equivalent to Eθ0

[
logPθ1 (X , y) | y

] > Eθ0

[
logPθ0 (X , y) | y

] =⇒ Pθ1 (y) >
Pθ0 (y).
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By our assumption and Proposition 3, we have that

0 < Eθ0

[
log

Pθ1 (X , y)

Pθ0 (X , y)
| Y = y

]
=∑

x
Pθ0 (x | y) · log

Pθ1 (x, y)

Pθ0 (x, y)

=∑
x

Pθ0 (x | y) · log
Pθ1 (y)

Pθ0 (y)
−∑

x
Pθ0 (x | y) · log

Pθ0 (x | y)

Pθ1 (x | y)

≤ log
Pθ1 (y)

Pθ0 (y)
.

Actually, EM algorithm does not use any information on the hidden Markov model. We now
consider how to compute

argmax
θ

Eθt

[
logPθ(X , y) | Y = y

]
in the hidden Markov model, which is an optimization problem.
Note that

Pθ(x, y) = ξ(x0) ·
n−1∏
t=0

A(xt , xt+1) ·
n∏

t=0
B(xt , yt ) .

It follows that

Eθ0

[
logPθ(X , y) | y

]= Eθ0

[
logξ(X0) | y

]+n−1∑
t=0

Eθ0

[
logA(X t , X t+1) | y

]+ n∑
t=0

Eθ0

[
logB(X t , yt ) | y

]
.

We optimize the three terms on the right hand side respectively.
First,

Eθ0

[
logξ(x0) | y

]=∑
i

Pθ0 (X0 = i | y) · logξ(i ) .

Since Pθ0 ( · | y) and ξ(·) are two distributions, by Proposition 3, we have

argmax
ξ(i )

Eθ0

[
logξ(x0) | y

]= Pθ0 (X0 = i | y) .

Second,
n−1∑
t=0

Eθ0

[
logA(X t , X t+1) | y

]= n−1∑
t=0

∑
i , j

Pθ0 (X t = i , X t+1 = j | y) · logA(i , j )

=∑
i

∑
j

logA(i , j ) ·
n−1∑
t=0

Pθ0 (X t = i , X t+1 = j | y) .

Again, to optimize the right hand side, we apply Proposition 3 and it yields that

argmax
A(i , j )

n−1∑
t=0

Eθ0

[
logA(X t , X t+1) | y

]= ∑n−1
t=0 Pθ0 (X t = i , X t+1 = j | y)∑n−1

t=0 Pθ0 (X t = i | y)
.
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Next,
n∑

t=0
Eθ0

[
logB(X t , yt ) | y

]=∑
i

n∑
t=0

Pθ0 (X t = i | y) · logB(i , yt )

=∑
i

∑
j

logB(i , j ) · ∑
t : yt= j

Pθ0 (X t = i | y) .

Again, applying Proposition 3, it implies that

arg max
B(i , j )

n∑
t=0

Eθ0

[
logB(X t , yt ) | y

]= ∑
t : yt= j Pθ0 (X t = i | y)∑n

t=0 Pθ0 (X t = i | y)
.

Finally, combining all of above together we obtain θ∗ = argmax Eθ0

[
logPθ(X , y) | y

]
.

Now the remaining problem is to compute ξ(i ), A(i , j ) and B(i , j ) given θ0. Clearly, it is sufficient
to compute Pθ0 (X t = i , X t+1 = j | y) efficiently.
This problem is also solvable by dynamic programming, and the whole algorithm is left as an
exercise again.
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