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Review of Syllabus

Markovian Process:

discrete space continuous space
discrete time DTMC Langevin Dynamics

continuous time Poisson / CTMC Brownian Motion

Non-Markovian Process:

Martingale

1 Definition of CTMC

Recall that for a (discrete-time) Markov chain, we have

Pr
[

X t+1 = j | X t = it , X t = it−1, . . . , X0 = i0
]= Pr

[
X t+1 = j | X t = it

]
.

Similarly, it is easy to define the following continuous-time stochastic process with the lack of
memory (Markovian) property.

Definition 1 (Continuous-Time Markov Chain). We say X (t ) is a continuous-time Markov chain

if ∀ s, t ≥ 0, ∀0 < s0 < ·· · < sn < s,

Pr
[

Xs+t = j | Xs = i , Xs0 = i0, . . . , Xsn = in
]= Pr

[
Xs+t = j | Xs = i

]= Pr
[

X t = j | X0 = i
]

.

We now introduce a significant continuous-time Markov chain.
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Example 2 (Continuous-Time Markov Chain described by Poisson Process). Suppose {Yn} is a
discrete-time Markov chain with transition probability given by u(i , j ), and N (t ) is a Poisson
process with rate λ. If {Yn} and N (t ) are two independent processes, then

X (t ) = YN (t )

is a continuous-time Markov chain.

Remark. In fact, we will show later that every continuous-time Markov chain has a definition
described by a Poisson process.

Intuitively, we can imagine that X (t ) is still a Poisson process, where each arrival is associated
with a random variable that only depends on the last arrival. It is clear to verify that X (t ) is
indeed a continuous-time Markov chain.
Recall that discrete-time Markov chains can be described by their transition probabilities P(i , j ).
We now similarly introduce the transition probability in the continuous-time case.

Definition 3 (Transition Probability). The transition probability Pt (i , j ) is defined as

Pt (i , j ) = Pr
[

X (t ) = j | X (0) = i
]

.

Note that in the discrete-time case, the transition probabilities after t steps are given by Pt . In
the continuous-time case we also have a similar result.

Theorem 1 (Chapman–Kolmogorov Equation). Ps+t = Ps ·Pt . That is,

Ps+t (i , j ) = ∑
k∈S

Ps(i ,k) ·Pt (k, j ) .

Proof. The proof is applying straightforwardly the law of total probability and the Markovian
property.

Ps+t (i , j ) = Pr
[

X (s + t ) = j | X (0) = i
]

=∑
k
Pr

[
X (s + t ) = j , X (s) = k | X (0) = i

]
=∑

k
Pr

[
X (s + t ) = j | X (s) = k, X (0) = i

] ·Pr[X (s) = k | X (0) = i ]

=∑
k

Pt (k, j ) ·Ps(i ,k) .

Chapman–Kolmogorov Equation shows that if there exists t0 > 0 such that we know the transi-
tion probability for all t < t0, we know it for all t > 0. This observation suggests that (roughly
speaking) the probabilities Ph(i , j ) where h → 0 play the key role. We now introduce and will
justify later the following quantity which determines the transition probabilities.
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Definition 4 (Jump Rate). The jump rate from i to j (where i ̸= j ) is given by

q(i , j )≜ lim
h→0

Ph(i , j )

h

if the limit exists.

As an example, we now compute the jump rates for the continuous-time Markov chain defined
in Example 2.
For any h > 0, we have

Ph(i , j ) =
∞∑

n=0
e−λh · (λh)n

n!
·un(i , j ) .

Remark. Note that here u is actually a matrix, so un(i , j ) is not
(
u(i , j )

)n , but
(
un

)
(i , j ).

Since u0(i , j ) = 0 if i ̸= j , it follows that

Ph(i , j ) = e−λh ·λh ·u(i , j )+ (λh)2
∞∑

n=2
e−λh · (λh)n−2

n!
·un(i , j ) .

Thus,

lim
h→0

Ph(i , j )

h
= lim

h→0
e−λh ·λ ·u(i , j )+λ2h

∞∑
n=2

e−λh · (λh)n−2

n!
·un(i , j ) =λ ·u(i , j ) .

Then we compute jump rates in other examples. We start from a simple one.

Example 5 (Poisson Process). Let X (t ) be the number of total arrivals up to time t in a Poisson
process with rate λ.
It is clear that q(n,n +1) =λ and q(i , j ) = 0 otherwise.

Recall that we introduce the notation of queueing theory in the last lecture. We consider the
following queue.

Example 6 (M/M/s Queue). M/M/s stands for a model where each customer arrives according
to a Poisson process, the end of servings are also Poisson processes (i.e., serving times have
exponential distributions), and the number of servers is s.
Suppose that the Poisson process of arrivals has rate λ and serving times have exponential distri-
butions with rate µ. We would like to compute the number of customers being served or waiting
in the queue.
Similarly to Example 5 we have q(n,n +1) = λ. But there is one more case in this example. The
number of customers being served or waiting in the queue may decrease — if someone completes
the serving and leaves.
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Note that the number of customers being served is min{n, s} if there is n customers. So the
first leaving occurs after the minimum time among min{n, s} exponential random times. Recall
the result of the exponential races. Let X1 ∼ Exponential(λ1) and X2 ∼ Exponential(λ2) be two
independent random variables. Then Y ≜min{X1, X2} ∼ Exponential(λ1 +λ2). So it follows that

q(n,n −1) =µ ·min{n, s} .

2 Constructing a CTMC with Given Jump Rates

Given jump rates, a natural question is to ask if we can construct a continuous-time Markov
chain. In other words, we would like to check if jump rates indeed contain sufficient information
on a continuous-time Markov chain so that if we know the jump rates then we can recover the
CTMC.
Intuitively, consider the CTMC in Example 2. We already know that the jump rates from i to j

is λ ·u(i , j ). So we may construct a CTMC by choosing λ and u(i , j ) properly.
However, there is a technical problem. We define q(i , j ) only for i ̸= j , but we should choose a
proper u(i , i ) for each i .
Recall that in Example 2, the transition of the CTMC has 2 steps: at any time t and state X (t ) = i ,
we first choose s ∼ Exponential(λ) to determine the next jump time and then choose the next
state X (t + s) ∼ u(i , · ).
Note that if the next state is i , it is equivalent to stay still. So for each state i , we may choose
distinct λi so that each jump will move to a state different from the current state. Now we are
ready to begin our construction.
Let λi =∑

j ̸=i q(i , j ), and

u(i , j )≜ q(i , j )

λi
.

It is clear that λi and u(i , j ) are proper ones. We should note here that different i may have
different λi . If we require that λi are identical, we may choose Λ= supi λi and add self-loops in
the Markov chain (i.e., choose u(i , i ) > 0).
Note that we are cheating here. We only computed the jump rates of the CTMC in Example 2
with identical λ. We haven’t know jump rates if λ are distinct for different states. But the proof
is easy and we do not show it rigorously here.
Now we’ve constructed a CTMC with given jump rates. Then another natural question is how
to compute the transition probabilities. Given i ̸= j , if we view Pt (i , j ) as a function of t , it is
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clear that q(i , j ) is its derivative at t = 0. We now consider Pt+h(i , j )−Pt (i , j ). Applying the
Chapman–Kolmogorov Equation we have

Pt+h(i , j )−Pt (i , j ) =∑
k

Ph(i ,k) ·Pt (k, j )−Pt (i , j )

= ∑
k ̸=i

Ph(i ,k) ·Pt (k, j )+ (
Ph(i , i )−1

) ·Pt (i , j ) .

It implies that

lim
h→0

1

h
·
(
Pt+h(i , j )−Pt (i , j )

)
= lim

h→0

1

h
·
(∑

k ̸=i
Ph(i ,k) ·Pt (k, j )+ (

Ph(i , i )−1
) ·Pt (i , j )

)
.

Note that

LHS= dPt (i , j )

dt
.

Let A =∑
k ̸=i Ph(i ,k) ·Pt (k, j ), B = (

Ph(i , i )−1
) ·Pt (i , j ), and P′

t (i , j ) denote dPt (i , j )
dt . Then we have

lim
h→0

1

h
· A = ∑

k ̸=i
Pt (k, j ) · lim

h→0

1

h
·Ph(i ,k)

= ∑
k ̸=i

q(i ,k) ·Pt (k, j ) ,

lim
h→0

1

h
·B = lim

h→0

1

h

(
− ∑

k ̸=i
Ph(i ,k)

)
·Pt (k, j )

=− ∑
k ̸=i

q(i ,k) ·Pt (i , j ) =−λi ·Pt (i , j ) .

It follows that
P′

t (i , j ) = ∑
k ̸=i

q(i ,k) ·Pt (k, j )−λi ·Pt (i , j ) .

Let Q be a matrix where Q(i , j ) = q(i , j ) if i ̸= j , and Q(i , i ) = −λi for all i . The equation above
can be written as

P′
t = Q ·Pt .

If Pt were a function of a real number t and Q were a constant number, we could have

P′
t

Pt
= Q =⇒

∫
P′

t

Pt
dt =

∫
Qdt =⇒ lnPt = Qt +C =⇒ Pt = eQt+C .

Although the argument does not hold for matrix, the result remains the same, where the expo-
nential of a matrix M is given by

eM =
∞∑

n=0

Mn

n!
.
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Since P0 is the identity matrix, we have C = 0, and thus

Pt = eQt =
∞∑

n=0

(t ·Q)n

n!
.

Remark. We should point out here that the real exponential function exp(·) can be characterized
in a variety of equivalent ways, but the above definition given by power series might be the most
common and the most natural one. The above power series always converges, even for matrix.
This justifies that the exponential of M is well-defined. The definition is also compatible with the
ordinary exponential function since if M is a 1×1 matrix, the matrix exponential of M is a 1×1

matrix whose single element is the ordinary exponential of the single element of M.

According to the above discussion, we obtain the following result.

Theorem 2 (Kolmogorov’s Backward Equation).

P′
t = Q ·Pt .

Similarly, we also have the forward equation.

Theorem 3 (Kolmogorov’s Forward Equation).

P′
t = Pt ·Q .

These two equations also show that Q ·Pt is commutative. Note that Pt and Q are not invertible
so the result is not trivial.

Example 7 (Poisson Process). Let X (t ) be the number of total arrivals up to time t in a Poisson
process with rate λ.
We’ve already known in Example 5 that its jump rates are q(i , j ) = λ if j = i +1 and q(i , j ) = 0

otherwise. We now compute Pt and verify Kolmogorov’s backward equation. We first compute
them directly, that is,

Pt (i , j ) = e−λt · (λt ) j−i

( j − i )!
,

P′
t (i , j ) =

−λe−λt , if i = j ;

−λe−λt · (λt ) j−i

( j−i )! +e−λt · λ j−i t j−i−1

( j−i−1)! , otherwise .

On the other hand, Kolmogorov’s backward equation shows that

P′
t (i , j ) =λ ·Pt (i +1, j )−λ ·Pt (i , j ) .

It is easy to verify the backward equation.
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Example 8 (Two-state Markov Chain). Consider the following Markov chain: S= {1,2}, q(1,2) =
λ and q(2,1) =µ. Then it is clear that

Q =
(
−λ λ

µ −µ

)
.

Our goal is to compute Pt (1,2).
Applying Kolmogorov’s backward equation, we have(

P′
t (1,1) P′

t (1,2)

P′
t (2,1) P′

t (2,2)

)
=

(
−λ λ

µ −µ

)(
Pt (1,1) Pt (1,2)

Pt (2,1) Pt (2,2)

)
.

It implies that P′
t (1,1) =−λ ·Pt (1,1)+λ ·Pt (2,1)

P′
t (2,1) =µ ·Pt (1,1)−µ ·Pt (2,1)

.

Let f (t ) = P′
t (1,1)−P′

t (2,1). It follows that

f ′(t ) = (−λ−µ) · f (t ) .

Hence we have
ln f (t ) =

∫
f ′(t )

f (t )
dt =

∫
(−λ−µ)dt = (−λ−µ)t + c .

Plugging in f (0) = P0(1,1)−P0(2,1) = 1, it yields that c = 0 and thus

Pt (1,1)−Pt (2,1) = f (t ) = e−(λ+µ)t .

Therefore, we conclude that

Pt (1,1) = P0(1,1)−
∫ t

0
P′

s(1,1)ds = 1−
∫ t

0
−λ ·e−(λ+µ)t d= µ

λ+µ
+ λ

λ+µ
·e−(λ+µ)t .

3 Comparing to the DTMC

We’ve already introduced variety of properties in the DTMC part, such as (I) (irreducible), (A)
(aperiodic), (S) (exitsing stationary distributions) and so on. We now focus on how to state these
properties in the continuous case. Note that the difference between CTMC and DTMC should be
their limiting behavior.
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Definition 9 (Irreducibility). ACTMC X (t ) is irreducible if for all state i and j , there exists a finite
number n and n states i = k1,k2, . . . ,kn = j such that

∀1 ≤ t < n, q(kt ,kt+1) > 0.

Note that any CTMC is “aperiodic” since it has self-loops. So it does not make sense to define
aperiodicity for CTMC. We now consider the stationary distribution.

Definition 10 (Stationary Distribution). We say π is a stationary distribution iff

∀ t > 0, πT· Pt =πT .

However, this condition is not easy to verify. As we mentioned before, we believe that jump rates
characterize all information on a CTMC. So it is natural to find the following proposition.

Proposition 4. π is a stationary distribution iff

πT· Q = 0 . (♠)

Intuitively, equation (♠) is equivalent to

∀ j ,
∑
i ̸= j

π(i ) ·q(i , j )−λ j ·π( j ) = 0.

So it suffices to show that
∀ j ,

∑
i ̸= j

π(i ) ·q(i , j ) =λ j ·π( j ) .

The LHS is the total rates coming into j , and the RHS is the total rates going out of j . Thus π is
the stationary distribution iff LHS=RHS.

Proof. We first show that if π is a stationary distribution, then equation (♠) holds. Since π is a
stationary distribution, we have

∀ j , πT· Pt ( j ) =π( j ) .

Taking the derivative with respect to t on both sides, it follows that∑
i
π(i ) ·P′

t (i , j ) = 0.
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Applying Kolmogorov’s forward equation, we obtain that

0 =∑
i
π(i )

∑
k

Pt (i ,k) ·Q(k, j )

=∑
k

∑
i
π(i ) ·Pt (i ,k) ·Q(k, j )

=∑
k
π(k) ·Q(k, j ) .

Next, we consider the other direction. Taking the derivative of πT · Pt ( j ) with respect to t , and
applying Kolmogorov’s backward equation, we have that

d

dt
πT· Pt ( j ) =∑

i
π(i ) ·P′

t (i , j )

=∑
i
π(i )

∑
k

Q(i ,k) ·Pt (k, j )

=∑
k

Pt (k, j )
∑

i
π(i ) ·Q(i ,k) = 0.

It justifies that πT·Pt ( j ) is a constant for any t . Since πT·P0( j ) =π( j ), we conclude that πT·Pt ( j ) =
π( j ) for all j .

Now, similarly to the fundamental theorem of Markov chains in the discrete case, a natural ques-
tion is to ask under which condition a CTMC has the unique stationary and converges to it.

Theorem 5. If X (t ) is irreducible and has a stationary distribution π, then

lim
t→∞Pt (i , j ) =π( j ) .

Note that the difference between this theorem and the fundamental theorem of Markov chains is
that we no longer require the Markov chain to be aperiodic.
Finally, let’s review the detailed balanced condition. We say a DTMC is reversible if

∀x, y, π(x) ·P(x, y) =π(y) ·P(y, x) .

The equation above is called the detailed balanced condition. In the continuous case, we have a
similar result as well.

Definition 11 (Detailed Balanced Condition for CTMC). We say a distribution π satisfies the
detailed balanced condition for CTMC if

∀ i , j , π(i ) ·q(i , j ) =π( j ) ·q( j , i ) .
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Theorem 6. If a distribution π satisfies the detailed balanced condition for CTMC, π is the stationary

distribution.

Proof. Fix j . It suffices to show that
(
πT · Q

)
( j ) = 0. Using the detailed balanced condition, it is

easy to verify that

(
πT· Q

)
( j ) =∑

i
π(i ) ·Q(i , j )

= ∑
i ̸= j

π(i ) ·q(i , j )−λ j ·π(i )

= ∑
i ̸= j

π( j ) ·q( j , i )−λ j ·π( j )

=π( j ) ·
(∑

i ̸= j
·q( j , i )−λ j

)
= 0.
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