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Lecture 1 – Review of Probability
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Lecturer : 张驰豪 Scribe: 杨宽

课程信息

课程大纲：

• 马尔可夫链Markov Chains: discrete / continuous

• 泊松过程 Poisson Process

• 鞅Martingale

• 布朗运动 Brownian Motion

• AI /大数据 /机器学习中的算法应用

参考资料：

• Richard Durret, Essentials of Stochastic Processes

• Sheldon M. Ross, Introduction to Probability Models

• http://www.stat.yale.edu/~pollard/Courses/251.spring2013/Handouts/Chang-notes.pdf

1 Probability and Random Variable

Definition 1 (Probability space). A probability space consists of a 3-ary tuple
(
Ω,F,Pr[·])：

• Ω is a set of “outcomes” (countable or uncountable);

• F⊆ 2Ω is a σ-algebra (a set of all possible “events”) on which we can define probability, and
here we say F is a σ-algebra if F satisfies

– ;∈F,

– A ∈F =⇒ Ac ∈F,

– a countable sequence of sets A1, . . . , An , . . . ∈F =⇒ ∪∞
i=1 Ai ∈F;

• Probability Pr[·] : F→ [0,1] is a function s.t.
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1. Pr[;] = 0,

2. Pr[Ω] = 1,

3. if A1, . . . , An , . . . ∈F are disjoint, then Pr
[∪∞

i=1 Ai
]=∑∞

i=1Pr[Ai ].

Example 2 (6-face dice). Ω= [6] = {1,2,3,4,5,6}, F= 2[6], Pr[{i }] = 1/6.
Generally, in a discrete space, Ω is countable. Define F = 2Ω and p̂ : Ω→ [0,1] s.t. ∑ω∈Ω p̂(ω) = 1,
then

∀ A ∈F, Pr[A ]≜
∑
ω∈A

p̂(ω) .

Question. How to define a probability on R?
Or, what do we mean by drawing a uniform real in (0,1)?

Example 3 (Uniform real in (0,1)). Define the probability of uniformly drawing real numbers as
follows:

• Ω= (0,1);

• F is the σ-algebra consisting of all “Borel sets” on (0,1), namely the collection of subsets
of (0,1) obtained from all open intervals by repeatedly taking countable unions and com-
plements;

• ∀ interval I = (a,b ), Pr[I ] = (b −a). (Lebesgue measure)

Remark. F is called the Borel algebra, which is the smallest σ-algebra containing all open inter-
vals. All Borel sets are measurable. The existence of non-Borel set is independent of ZF (Zermelo-
Fraenkel set theory).

Definition 4 (Random variable). A random variable is a function or mapping from the probability
space to a field. Given

(
Ω,F,Pr[·]), a real-valued random variable is a function of Ω:

X : Ω→R .

Definition 5 (Distribution (discrete)). For a countableΩ and a random variable X , the distribution
of X is given by

∀a ∈Range(X ), µ(a) = Pr[X = a]≜ Pr
[{
ω : X (ω) = a

}]= Pr
[

X −1(a)
]

.

Example 6 (Binomial distribution). Toss a biased coin (Head with probability p and Tail with
probability 1−p) n times. Let X be the number of Heads, then the distribution of X is called the
binomial distribution:

Ω= {0,1}n , X ∼Binom(n, p) ⇐⇒ Pr[X = k] =
(

n

k

)
·pk · (1−p)n−k .
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Example 7 (Geometric distribution). Toss a biased coin. Let X be the number of trials until the
first Head, then the distribution of X is called the geometric distribution:

Ω= {0,1}∗, X ∼Geometric(n, p) ⇐⇒ Pr[X = k] = (1−p)k−1p .

Definition 8 (Distribution (continuous)). For an uncountable Ω and a random dx variable X , if
there exists a nonnegative function f (x) s.t.

Pr[a ≤ X ≤ b ] =
∫ b

a
f (x)dx ,

then f (x) is called the probability density function of X .
The function

F (x) = Pr[X ≤ x] =
∫ x

−∞
f (t )dt

is called the cumulative distribution function of X .

Example 9 (Uniform distribution on (a,b )). The probability density function is given by

f (x) =


1

b−a , if a < x < b;

0, otherwise .

Example 10 (Exponential distribution). The probability density function of the exponential dis-
tribution with λ> 0 is defined as

f (x) =

λe−λx , x ≥ 0;

0, otherwise .

Example 11 (Gaussian / Standard normal distribution). Theprobability density function is defined
as

f (x) = 1p
2π

e−x2/2 .

2 Expectation

Definition 12 (Expectation). Given a probability space
(
Ω,F,Pr[·]) and a random variable X , the

expectation of X is defined as:

E[X ] =
∑
a

a ·Pr[X = a] , (discrete)

E[X ] =
∫ ∞

−∞
t · f (t )dt . (continuous)
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Example 13 (Uniform distribution on (a,b )).

E[X ] =
∫ b

a
t · 1

b −a
dt = 1

b −a
· t 2

2

∣∣∣b

a
= b +a

2
.

Example 14 (Exponential distribution).

E[X ] =
∫ ∞

0
t ·λe−λt dt =−

∫ ∞

0
t de−λt =−te−λt

∣∣∣∞
0
+

∫ ∞

0
e−λt dt =− 1

λ
·e−λt

∣∣∣∞
0
= 1

λ
.

Definition 15 (Variance). Given a probability space
(
Ω,F,Pr[·]) and a random variable X , the

variance of X is defined as:

Var [X ] = E
[
(X −E[X ])2]= E

[
X 2]− (

E[X ]
)2 .

Definition 16 (Independence). Given a probability space
(
Ω,F,Pr[·]) and two random variables

X and Y , X and Y are independent (X ⊥ Y ) if

∀ A,B ⊆R, Pr[X ∈ A∧Y ∈ B ] = Pr[X ∈ A ] ·Pr[Y ∈ B ] .

Proposition 1 (Linearity of expectation). If X1, X2, . . . , Xn are n random variables (not necessarily

independent), then

E

[ n∑
i=1

Xi

]
=

n∑
i=1

E[Xi ] .

Proposition 2. If X1, X2, . . . , Xn are n “mutually independent” random variables, then

E

[ n∏
i=1

Xi

]
=

n∑
i=1

E[Xi ] ,

Var
[ n∑

i=1
Xi

]
=

n∑
i=1

Var [Xi ] .

3 Conditional Probability and Conditional Expectation

In this section, assume the set of outcomes Ω is finite. Then case for infinite Ω is more subtle.

Definition 17 (Conditional probability). Given a probability space
(
Ω,F,Pr[·]), let A and B are

two events, then the probability of A conditioned on B is

Pr[A | B ]≜ Pr[A∩B ]

Pr[B ]
.
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Similarly, we would like to define conditional expectation. However, to formally deal with con-
ditional expectation, we should introduce measurable function first.

Definition 18 (Measurable functions). Let F be a σ-algebra and X be a function. Then X is F-
measurable if

∀a ∈Range(X ), X −1(a) ∈F .

Denote by σ(X ) the minimum σ-algebra F̂ such that X is F̂-measurable.

Now we can define conditional expectation. Note that we only define it in discrete cases here.

Definition 19 (Conditional expectation (discrete)). Suppose X ,Y : Ω→ R are two random vari-
ables, and A ⊆Ω is a event. Then the expectation of X conditioned on A is

E[X | A ] =
∑

x
x ·Pr[X = x | A ] .

Specifically, let A = Y −1(a) be the event that Y = a,

E[X | Y = a] =
∑
b

b ·Pr[X = b | Y = a] .

Given Y , fY = E[X | Y ] is a function (a random variable) on Ω which satisfies

∀ω ∈Ω, fY (ω) = E[X | Y = Y (ω)] .

Proposition 3. Conditional expectation has the following two important propositions:

1. E[X | Y ] is σ(Y )-measurable;

2. E[E[X | Y ]] = E[ fY ] = E[X ].

Proof. Item 1 is trivial. We only prove item 2 here.

E[E[X | Y ]] =
∑

y
E
[

X | Y = y
] ·Pr[Y = y

]
=∑

x

∑
y

x ·Pr[X = x | Y = y
] ·Pr[Y = y

]
=∑

x
x ·∑

y
Pr

[
X = x | Y = y

] ·Pr[Y = y
]

=∑
x

x ·∑
y
Pr

[
X = x ∧Y = y

]
=∑

x
x ·Pr[X = x]

= E[x] .
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Example 20. Consider the probability space
(
Ω,F,Pr[·]) where Ω is the set of all Chinese people

and Pr[·] is the uniform probability.
Let X and Y be two random variables that X is the height of a person and Y is the gender of a
person. Then E[X ] is the average height of Chinese people.
Let fY = E[X | Y ] : Ω→R be the random variable that fY (ω) is the average height of people with
the same gender as ω. Then E[E[X | Y ]] = E[X ].
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