[CS1961: Lecture 15] Random Walk, Cheeger’s In-
equality

1 Markov Chain

In this lecture, we will introduce another convenient normalization of
weighted adjacency matrix. This can be best described as a random walk on
the graph. We will introduce some basic terminologies on random walk and

Markov chains.

1.1 Random Walk on Undirected Graph

Consider a random walk on the following undirected graph. We start at

Xo = 1 and move to a neighbor of the current vertex u.a.r. at each step.
The distribution of the next position X;,; is determined only by the current
state. This random walk is a simple Markov chain.

w

Definition 1 (Markov Chain). A sequence of random variables Xo, X1, . . ., Xp, Xp41, - - -

is a Markov chain if for any t € N and any states jo, j1, - - -, ji» J,
Pr (X =j | Xe = ju. Xe-1 = jr-1,- - - Xo = jol = Pr[Xpm1 = j | X¢ = ji].
A Markov chain can be characterized by a matrix P = (p; j)i’j o €
[0, 1]9%? where p;; = Pr[Xp41 = j | X; = i]. The transition matrix P is a
stochastic matrix since )’ jcq pij = 1 for all i € Q. For example, in the above

random walk, we have Q = [4] and

0, ifinj
p ij = 1 PN L
@, Ifl ~]
Sometimes we will simply denote the transition matrix P as the Markov
chain for convenience.
Let AG = (wij)i,jE[n
normalize it into a random walk Pg:

! be a weighted graph where every w;; > 0. We can

« Foreveryi € [n],letw; = Zj Wijs

W;

« Foreveryi, j € [n],let Ps(i, j) = =L

ij
w; *
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Wi
Zje[n] wj
As a result, the Pg constructed above satisfies that for every i, j € [n],

We also define a distribution s over [n] as 7 (i) =

(i) - Po (i, ) = n(j) - Po(J, (= wij).

This is called reversibility of Pg. The distribution 7 is called a stationary
distribution of Pg.

For example, in the following graph, we have P5(1,2) = ﬁ = %,

Pg(1,3) =  and P5(1,4) = 3.
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2 The Spectrum of Markov Chains

2.1 Spectral Decomposition

Another advantage to use reversible chains is that their transition matrices
are symmetric in some sense. Suppose P is reversible with respect to x.
Let IT = diag(x) be the diagonal matrix with I1(i, i) = 7 (i). Define Q =
I12 PII "%, then we can verify that Q is symmetric:
.o N1 N1 1 .. -1 ..
Q@) = ()2 P(i, )z ()2 = 2(j)2P(j, )z (D)2 = Q). 1).

So we can apply the spectral decomposition theorem for Q, which yields

n

T

Q= Z Aiuiui >
i=1

where Ay > .-+ > A, are eigenvalues of Q with corresponding orthonormal
eigenvectors uy,...,u,. If welet v; := H_%ui, then the above is equivalent
to

n n
_1 1
pP= El AT Zu,-ulTHZ = El AiViVIH.
i= i=

We claim that A4, ..., A, are eigenvalues of P with corresponding eigen-
vectors vy, ..., Vvy. To see this, we have for any j € [n]:

n
1 1
- . -2 . T 2 .
Pv; = E AT 2uu; Iz v
i=1

n
-1 11
:ZA"H zu;ul 11211 2u;
i=1

:Ajvj-

2
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Everything looks nice if we equip R” with the inner product (-, -); de-
fined as (x,y)n = x'Ily = X1, n(i)x(i)y(i). It is clear that vy, ..., v, are
orthonormal with respect to the inner product:

0, ifi# j;

(vi, v ={ .
1, ifi=j.

2.2 Graph Expansion

We want to measure the connectivity of a graph in terms of its spectrum.
Let G = (V,E) be a weighted graph with nonnegative weights (w;;), Jeln]-
For any S C V, we define the expansion of S as

Q8,8 = > xPG).

i€S,jeV\S

Furthermore, we define the expansion of S as

a(s) = £59),
n(5)

where 7(S) = X;es 7(i). Suppose X; ~ 7, then ®(S) =Pr [X;1 ¢ S | X; € 5],
which is the probability of escaping S. Equivalently, it is the ratio between
the weight of edges connecting S and S and the weight of edges incident to
S.

The expansion of G is the smallest ®(S) over all S with measure at most
1/2,ie., ®(G) = minSgV:n(S)s% ®(S). We have the following celebrated
connection between ®(G) and A,.

Theorem 2 (Cheeger’s Inequality). % < O(P) <+/2(1-1y).

Moreover, A, also carries the information on how to partition G into the
hardest (S, S).

3 Cheeger’s Inequality

Now we prove Cheeger’s ineqaulity. We present the proof in terms of a
reversible Markov chain P with eigenvalues A; > A, > --- > A,. Consider
the Laplacian matrix L = [ — P with eigenvaluesy; < y, < -+ < yp,. We
have shown that y; = 0and y; = 1 — A; for all i € [n]. Then the Cheeger’s
inequality can be written in terms of y,.

Theorem 3 (Cheeger’s Inequality). 2 < ®(P) < /2y,.
We prove % < O(P) (@) and ®(P) < /2y, (@) respectively.

Proof of ©. We relate ®(P) with y, using the variational characterization.

Note that
. (%, Lx)11
Y2 = min max ———

UCR™ ’
LS, xeUNo} (%30
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Let S be the subset of V such that ®(P) = max {<I>(S), CD(E)}. LetU =

span (15, 15). For any x € U, we can write x as algs + blg for some constants
a and b. Then

L Dijyer TP ) (xi —x))°  Tieg jes 7P j)(a -~ b)?
xx)n i m(i)x? - 7(S)a? + 7(S)b?
. 2% s, jes TP, j)(a* + b?)
m(S)a® + n(S)b?
.. {Z,-es,,-esn(i)P(i,j) Yies,jes TP, J)
n(S) ’ 7(S)

IA

} = 20(P)

where the second inequality follows from the fact that for positive real
z1+2; < 21 22
yity2 — Y1’ Y2 )

numbers z1, z2, Y1, Y2,

By definition, ®(P) = min sev d(S). To prove @, we only need to find

n($)<}

a S C V such that ®(S) < 4/2y;. Such S can be generated using the Fiedler’s
algorithm. With input x € R":

« sort V according to x, get V = {vy, ...,v,} where x(v1) < x(v2) < x(vy,);
. foreachi € [n],letS; = {vy,...,0;};
« return the S; with the minimum ®(S;) vV ®(S;).! 'a V b means max {a, b}.

Theorem 4. Foranyx L 1, assume the Fiedler’s algorithm returns S with

input x. Then ®(S) < /2Ry (x).

With Theorem 4, the proof of @ is straightforward. Note that v, the
eigenvector of L corresponding to eigenvalue y», is the minimizer of Ry (x)
on the constraint that x L 1. We can divide the graph into different
blocks where each block is well connected inside. Intuitively, to get smaller
2ijyer TP, j) (xi — xj)%, we tend to assign the same value to the x;’s in
the same block. The Fiedler’s algorithm will return a partition that divides
the blocks into two groups. This indicates that v, contains the information
to find the bottleneck of the graph.

Proof of @. Run the Fiedler’s algorithm with input x = v, and get output S.

By Theorem 4, ®(S) < /2R (v2) = /2y».

It remains to prove Theorem 4.

Proof of Theorem 4. Input x and run the Fiedler’s algorithm. W.l.o.g., as-

sume x; < -+ < Xp.

Define ¢ be the minimum k such that Zle T > % Lety = (y1,.--Yn) =

x—x;-1. That is, y; = x;—x, for all i € [n]. Rescale y such that y?+y2 = 1. We
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|2¢]

yl Ya Iy[ yn

randomly pick t € [y1,y,]| with density 2|t| and set S; = {i € [n] | y; < ¢}

Then 5 ()P, )
_ ies, ics, T(DP(L, j
max {cp(st),cp(st)} = ZiSPeiSS -
min {Jt(St), Jt(St)}
Let A = ZieS,,jeE, x(i)P(i, j) and B := min {H(St),ﬂ(gt)}. We claim that
E[A
Ha < VR ().
By definition,
E[Al= Y x()P(i,j)Pr [i €S.je Et] . (1)
{i.j}€E

i<j

Note that Pr [i €S8 je€ St] is the probability that t € [y;,y;], which can be
calculated directly by integration:

3 ﬂ(i)P(i,j)/yj2|t|dt

Equation (1)

{i,ij<)]e_E Yi
= > 7(@PG ) (sen(yy)y: - sen(?)
{i,szgE
< >, PG ) (lyal + |yy]) (v - i)
{l]<}]EE
= > @@OPGN? (Il +]yl) - xDPG) (y; - w) - @)
{i.j}eE

i<j

By the Cauchy-Schwarz inequality,

Equation (2) < | > n(i)P(i,j)(|yi|+|yjI)2-J > rPG) (- i)’
{i.jleE {i.j}eE
i<j i<j

< \2 Z 7 (i)P(i, j) (y,? +y§) (Y, Ly)n
{ij}eE

= V2(y, v)n - V. Ly)n

Recall that ¢ is a middle line of . Therefore, if t < 0, 7(S;) < 7(S;) and
otherwise 7(S;) > 7(S;). Then we have

E[B] = Pr [t < 0] E [(S,) | t < 0] +Pr[t > O] E [n(Et)

=

@ @
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Note that

-1

(3) = Pr[t < 0] Zﬁ(i)Pr[i €S, |t<0]
i=1
-1

-1 0
= > x) [ 2lelde=)" xGi)y?
i=1 Yi

i=1

Similarly, (4) = X, 7(i)y?. Summing up the two terms, we have E [B] =
i1 ”(i)y? = (y, y)n- Therefore,

E [A] 2(y, Ly)n _
BB S\ oy VR

Since y is obtained by adding a constant offset to x and x L 1, we have
(v;y)n = (x,x)i and (y, Ly)nr = (x, Lx)r1. Thus

e

[A]
E [B]

< 2R (y) < V2R, (%),

or equivalently

E[A—B\/M] <o.

Therefore, the probability of choosing t € [y1,y,] such that A — B+/2R; (x) <
0 is nonzero. This proves the existence of S; that max {fD(St), @(Et)} <

V2R (x)and thus indicates the correctness of Theorem 4. O
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