[CS1961: Lecture 15] Random Walk, Cheeger's Inequality

1 Markov Chain

In this lecture, we will introduce another convenient normalization of weighted adjacency matrix. This can be best described as a random walk on the graph. We will introduce some basic terminologies on random walk and Markov chains.

1.1 Random Walk on Undirected Graph

Consider a random walk on the following undirected graph. We start at $X_0 = 1$ and move to a neighbor of the current vertex u.a.r. at each step. The distribution of the next position X_{t+1} is determined only by the current state. This random walk is a simple *Markov chain*.

Definition 1 (Markov Chain). A sequence of random variables $X_0, X_1, \ldots, X_t, X_{t+1}, \ldots$ is a Markov chain if for any $t \in \mathbb{N}$ and any states $j_0, j_1, \ldots, j_t, j_t$,

 $\Pr\left[X_{t+1} = j \mid X_t = j_t, X_{t-1} = j_{t-1}, \dots, X_0 = j_0\right] = \Pr\left[X_{t+1} = j \mid X_t = j_t\right].$

A Markov chain can be characterized by a matrix $P = (p_{ij})_{i,j\in\Omega} \in [0,1]^{\Omega\times\Omega}$ where $p_{ij} = \Pr[X_{t+1} = j | X_t = i]$. The transition matrix P is a stochastic matrix since $\sum_{j\in\Omega} p_{ij} = 1$ for all $i \in \Omega$. For example, in the above random walk, we have $\Omega = [4]$ and

$$p_{ij} = \begin{cases} 0, & \text{if } i \neq j \\ \frac{1}{\deg(i)}, & \text{if } i \sim j \end{cases}.$$

Sometimes we will simply denote the transition matrix P as the Markov chain for convenience.

Let $A_G = (w_{ij})_{i,j \in [n]}$ be a weighted graph where every $w_{ij} \ge 0$. We can normalize it into a random walk P_G :

- For every $i \in [n]$, let $w_i = \sum_j w_{ij}$;
- For every $i, j \in [n]$, let $P_G(i, j) = \frac{w_{ij}}{w_i}$.

We also define a distribution π over [n] as $\pi(i) = \frac{w_i}{\sum_{j \in [n]} w_j}$. As a result, the P_G constructed above satisfies that for every $i, j \in [n]$,

$$\pi(i) \cdot P_G(i,j) = \pi(j) \cdot P_G(j,i) (= w_{ij}).$$

This is called *reversibility* of P_G . The distribution π is called a *stationary distribution* of P_G .

For example, in the following graph, we have $P_G(1, 2) = \frac{1}{1+2+3} = \frac{1}{6}$, $P_G(1, 3) = \frac{1}{3}$ and $P_G(1, 4) = \frac{1}{2}$.

2 The Spectrum of Markov Chains

2.1 Spectral Decomposition

Another advantage to use reversible chains is that their transition matrices are symmetric in some sense. Suppose *P* is reversible with respect to π . Let $\Pi = \text{diag}(\pi)$ be the diagonal matrix with $\Pi(i, i) = \pi(i)$. Define $Q = \Pi^{\frac{1}{2}} P \Pi^{-\frac{1}{2}}$, then we can verify that *Q* is symmetric:

$$Q(i,j) = \pi(i)^{\frac{1}{2}} P(i,j) \pi(j)^{-\frac{1}{2}} = \pi(j)^{\frac{1}{2}} P(j,i) \pi(i)^{-\frac{1}{2}} = Q(j,i).$$

So we can apply the spectral decomposition theorem for Q, which yields

$$Q = \sum_{i=1}^n \lambda_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}},$$

where $\lambda_1 \geq \cdots \geq \lambda_n$ are eigenvalues of Q with corresponding orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$. If we let $\mathbf{v}_i := \Pi^{-\frac{1}{2}} \mathbf{u}_i$, then the above is equivalent to

$$P = \sum_{i=1}^{n} \lambda_i \Pi^{-\frac{1}{2}} \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}} \Pi^{\frac{1}{2}} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}} \Pi.$$

We claim that $\lambda_1, \ldots, \lambda_n$ are eigenvalues of *P* with corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. To see this, we have for any $j \in [n]$:

$$P\mathbf{v}_{j} = \sum_{i=1}^{n} \lambda_{i} \Pi^{-\frac{1}{2}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}} \Pi^{\frac{1}{2}} \mathbf{v}_{j}$$
$$= \sum_{i=1}^{n} \lambda_{i} \Pi^{-\frac{1}{2}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}} \Pi^{\frac{1}{2}} \Pi^{-\frac{1}{2}} \mathbf{u}_{j}$$
$$= \lambda_{j} \mathbf{v}_{j}.$$

Everything looks nice if we equip \mathbb{R}^n with the inner product $\langle \cdot, \cdot \rangle_{\Pi}$ defined as $\langle \mathbf{x}, \mathbf{y} \rangle_{\Pi} = \mathbf{x}^{\mathsf{T}} \Pi \mathbf{y} = \sum_{i=1}^n \pi(i) \mathbf{x}(i) \mathbf{y}(i)$. It is clear that $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are orthonormal with respect to the inner product:

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\Pi} = \begin{cases} 0, & \text{if } i \neq j; \\ 1, & \text{if } i = j. \end{cases}$$

2.2 Graph Expansion

We want to measure the connectivity of a graph in terms of its spectrum. Let G = (V, E) be a weighted graph with nonnegative weights $(w_{ij})_{i,j \in [n]}$. For any $S \subseteq V$, we define the expansion of S as

$$Q(S,\overline{S}) := \sum_{i \in S, j \in V \setminus S} \pi(i) P(i,j).$$

Furthermore, we define the *expansion* of *S* as

$$\Phi(S) = \frac{Q(S,\overline{S})}{\pi(S)},$$

where $\pi(S) = \sum_{i \in S} \pi(i)$. Suppose $X_t \sim \pi$, then $\Phi(S) = \Pr[X_{t+1} \notin S | X_t \in S]$, which is the probability of escaping *S*. Equivalently, it is the ratio between the weight of edges connecting *S* and \overline{S} and the weight of edges incident to *S*.

The expansion of *G* is the smallest $\Phi(S)$ over all *S* with measure at most 1/2, i.e., $\Phi(G) = \min_{S \subseteq V: \pi(S) \le \frac{1}{2}} \Phi(S)$. We have the following celebrated connection between $\Phi(G)$ and λ_2 .

Theorem 2 (Cheeger's Inequality). $\frac{1-\lambda_2}{2} \leq \Phi(P) \leq \sqrt{2(1-\lambda_2)}$.

Moreover, λ_2 also carries the information on how to partition *G* into the hardest (S, \overline{S}) .

3 Cheeger's Inequality

Now we prove Cheeger's inequality. We present the proof in terms of a reversible Markov chain *P* with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Consider the Laplacian matrix L = I - P with eigenvalues $\gamma_1 \le \gamma_2 \le \cdots \le \gamma_n$. We have shown that $\gamma_1 = 0$ and $\gamma_i = 1 - \lambda_i$ for all $i \in [n]$. Then the Cheeger's inequality can be written in terms of γ_2 .

Theorem 3 (Cheeger's Inequality). $\frac{\gamma_2}{2} \leq \Phi(P) \leq \sqrt{2\gamma_2}$.

We prove $\frac{\gamma_2}{2} \leq \Phi(P)$ (①) and $\Phi(P) \leq \sqrt{2\gamma_2}$ (②) respectively.

Proof of ①. We relate $\Phi(P)$ with γ_2 using the variational characterization. Note that

$$\gamma_2 = \min_{\substack{U \subseteq \mathbb{R}^n \\ \dim(U)=2}} \max_{\mathbf{x} \in U \setminus \{0\}} \frac{\langle \mathbf{x}, L \mathbf{x} \rangle_{\Pi}}{\langle \mathbf{x}, \mathbf{x} \rangle_{\Pi}}.$$

Let *S* be the subset of *V* such that $\Phi(P) = \max \{\Phi(S), \Phi(\overline{S})\}$. Let $U = \operatorname{span}(\mathbf{1}_S, \mathbf{1}_{\overline{S}})$. For any $\mathbf{x} \in U$, we can write \mathbf{x} as $a\mathbf{1}_S + b\mathbf{1}_{\overline{S}}$ for some constants *a* and *b*. Then

$$\begin{split} \frac{\langle \mathbf{x}, L\mathbf{x} \rangle_{\Pi}}{\langle \mathbf{x}, \mathbf{x} \rangle_{\Pi}} &= \frac{\sum_{\{i,j\} \in E} \pi(i) P(i,j) (x_i - x_j)^2}{\sum_i \pi(i) x_i^2} = \frac{\sum_{i \in S, j \in \overline{S}} \pi(i) P(i,j) (a - b)^2}{\pi(S) a^2 + \pi(\overline{S}) b^2} \\ &\leq \frac{2 \sum_{i \in S, j \in \overline{S}} \pi(i) P(i,j) (a^2 + b^2)}{\pi(S) a^2 + \pi(\overline{S}) b^2} \\ &\leq 2 \max\left\{\frac{\sum_{i \in S, j \in \overline{S}} \pi(i) P(i,j)}{\pi(S)}, \frac{\sum_{i \in S, j \in \overline{S}} \pi(i) P(i,j)}{\pi(\overline{S})}\right\} = 2\Phi(P) \end{split}$$

where the second inequality follows from the fact that for positive real numbers $z_1, z_2, y_1, y_2, \frac{z_1+z_2}{y_1+y_2} \le \max\left\{\frac{z_1}{y_1}, \frac{z_2}{y_2}\right\}$.

By definition, $\Phi(P) = \min_{\substack{S \subseteq V \\ \pi(S) \le \frac{1}{2}}} \Phi(S)$. To prove ②, we only need to find a $S \subseteq V$ such that $\Phi(S) \le \sqrt{2\gamma_2}$. Such *S* can be generated using the Fiedler's algorithm. With input $\mathbf{x} \in \mathbb{R}^V$:

- sort V according to **x**, get $V = \{v_1, \ldots, v_n\}$ where $\mathbf{x}(v_1) \le \mathbf{x}(v_2) \le \mathbf{x}(v_n)$;
- for each $i \in [n]$, let $S_i = \{v_1, ..., v_i\}$;
- return the S_i with the minimum $\Phi(S_i) \vee \Phi(\overline{S}_i)$.¹

Theorem 4. For any $\mathbf{x} \perp \mathbf{1}$, assume the Fiedler's algorithm returns *S* with input \mathbf{x} . Then $\Phi(S) \leq \sqrt{2R_L(\mathbf{x})}$.

With Theorem 4, the proof of @ is straightforward. Note that \mathbf{v}_2 , the eigenvector of L corresponding to eigenvalue γ_2 , is the minimizer of $R_L(\mathbf{x})$ on the constraint that $\mathbf{x} \perp \mathbf{1}$. We can divide the graph into different blocks where each block is well connected inside. Intuitively, to get smaller $\sum_{\{i,j\}\in E} \pi(i)P(i,j)(x_i - x_j)^2$, we tend to assign the same value to the x_i 's in the same block. The Fiedler's algorithm will return a partition that divides the blocks into two groups. This indicates that \mathbf{v}_2 contains the information to find the bottleneck of the graph.

Proof of ②. Run the Fiedler's algorithm with input $\mathbf{x} = \mathbf{v}_2$ and get output *S*. By Theorem 4, $\Phi(S) \le \sqrt{2R_L(\mathbf{v}_2)} = \sqrt{2\gamma_2}$.

It remains to prove Theorem 4.

Proof of Theorem 4. Input **x** and run the Fiedler's algorithm. W.l.o.g., assume $x_1 \leq \cdots \leq x_n$.

Define ℓ be the minimum k such that $\sum_{i=1}^{k} \pi_i \ge \frac{1}{2}$. Let $\mathbf{y} = (y_1, \dots, y_n) = \mathbf{x} - x_{\ell} \cdot \mathbf{1}$. That is, $y_i = x_i - x_{\ell}$ for all $i \in [n]$. Rescale \mathbf{y} such that $y_1^2 + y_n^2 = \mathbf{1}$. We

¹ $a \lor b$ means max $\{a, b\}$.

randomly pick $t \in [y_1, y_n]$ with density 2|t| and set $S_t = \{i \in [n] \mid y_i \le t\}$. Then ∇ (;) D(;;)

$$\max\left\{\Phi(S_t), \Phi(\overline{S}_t)\right\} = \frac{\sum_{i \in S_t, j \in \overline{S}_t} \pi(i) P(i, j)}{\min\left\{\pi(S_t), \pi(\overline{S}_t)\right\}}$$

Let $A := \sum_{i \in S_t, j \in \overline{S}_t} \pi(i) P(i, j)$ and $B := \min\left\{\pi(S_t), \pi(\overline{S}_t)\right\}$. We claim that $\frac{\mathbb{E}[A]}{\mathbb{E}[B]} \leq \sqrt{2R_L(\mathbf{x})}.$

By definition,

$$\mathbf{E}\left[A\right] = \sum_{\substack{\{i,j\}\in E\\i
(1)$$

Note that $\Pr\left[i \in S_t, j \in \overline{S}_t\right]$ is the probability that $t \in [y_i, y_j]$, which can be calculated directly by integration:

Equation (1) =
$$\sum_{\substack{\{i,j\}\in E\\i
= $\sum_{\substack{\{i,j\}\in E\\i
 $\leq \sum_{\substack{\{i,j\}\in E\\i
= $\sum_{\substack{\{i,j\}\in E\\i (2)$$$$$

By the Cauchy-Schwarz inequality,

Equation (2)
$$\leq \sqrt{\sum_{\substack{\{i,j\}\in E\\i
$$\leq \sqrt{2\sum_{\substack{\{i,j\}\in E\\i
$$= \sqrt{2\langle \mathbf{y}, \mathbf{y} \rangle_{\Pi}} \cdot \sqrt{\langle \mathbf{y}, L\mathbf{y} \rangle_{\Pi}}$$$$$$

Recall that ℓ is a middle line of π . Therefore, if $t < 0, \pi(S_t) \le \pi(\overline{S}_t)$ and otherwise $\pi(S_t) > \pi(\overline{S}_t)$. Then we have

$$\mathbf{E}\left[B\right] = \underbrace{\mathbf{Pr}\left[t < 0\right] \mathbf{E}\left[\pi(S_t) \mid t < 0\right]}_{(3)} + \underbrace{\mathbf{Pr}\left[t \ge 0\right] \mathbf{E}\left[\pi(\overline{S}_t) \mid t \ge 0\right]}_{(4)}.$$

Note that

(3) =
$$\Pr[t < 0] \sum_{i=1}^{\ell-1} \pi(i) \Pr[i \in S_t | t < 0]$$

= $\sum_{i=1}^{\ell-1} \pi(i) \int_{y_i}^{0} 2|t| dt = \sum_{i=1}^{\ell-1} \pi(i) y_i^2.$

Similarly, (4) = $\sum_{i=\ell}^{n} \pi(i) y_i^2$. Summing up the two terms, we have $\mathbf{E}[B] = \sum_{i=1}^{n} \pi(i) y_i^2 = \langle \mathbf{y}, \mathbf{y} \rangle_{\Pi}$. Therefore,

$$\frac{\mathbf{E}[A]}{\mathbf{E}[B]} \leq \sqrt{\frac{2\langle \mathbf{y}, L\mathbf{y}\rangle_{\Pi}}{\langle \mathbf{y}, \mathbf{y}\rangle_{\Pi}}} = \sqrt{2R_L(\mathbf{y})}.$$

Since **y** is obtained by adding a constant offset to **x** and **x** \perp **1**, we have $\langle \mathbf{y}, \mathbf{y} \rangle_{\Pi} \geq \langle \mathbf{x}, \mathbf{x} \rangle_{\Pi}$ and $\langle \mathbf{y}, L \mathbf{y} \rangle_{\Pi} = \langle \mathbf{x}, L \mathbf{x} \rangle_{\Pi}$. Thus

$$\frac{\mathrm{E}\left[A\right]}{\mathrm{E}\left[B\right]} \leq \sqrt{2R_L(\mathbf{y})} \leq \sqrt{2R_L(\mathbf{x})},$$

or equivalently

$$\mathbf{E}\left[A - B\sqrt{2R_L(\mathbf{x})}\right] \le 0.$$

Therefore, the probability of choosing $t \in [y_1, y_n]$ such that $A - B\sqrt{2R_L(\mathbf{x})} \le 0$ is nonzero. This proves the existence of S_t that $\max \left\{ \Phi(S_t), \Phi(\overline{S}_t) \right\} \le \sqrt{2R_L(\mathbf{x})}$ and thus indicates the correctness of Theorem 4.