
[CS1961: Lecture 14] Spectral Graph Theory

1 Graph Adjacency Matrix and Its Spectrum

Given an undirected graph 𝐺 = (𝑉 , 𝐸) where 𝑉 = [𝑛], let 𝐴𝐺 =
(
𝑎𝑖 𝑗

)
𝑖, 𝑗 ∈[𝑛]

be the adjacent matrix of 𝐺 . That is, 𝐴𝐺 is a boolean matrix with 𝑎𝑖 𝑗 = 1
iff (𝑖, 𝑗) ∈ 𝐸. Clearly 𝐴𝐺 is symmetric. Therefore the 𝑛 eigenvalues of 𝐴𝐺 ,
𝜆1, 𝜆2, . . . , 𝜆𝑛 , are all real numbers. W.l.o.g, we assume 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 .
This is called the spectrum of 𝐺 . For example, when 𝐺 is the complete
graph 𝐾𝑛 ,

𝐴𝐾𝑛 =


0 1 · · ·
1 0
...

. . . 1
1 0


.

The 𝑛 eigenvalues of 𝐴𝐾𝑛 is 𝜆1 = 𝑛 − 1 and 𝜆2 = · · · = 𝜆𝑛 = −1. The
corresponding eigenvectors are

v1 =



1
1
1
...

1


, v2 =



1
−1
0
...

0


, · · · , v𝑛 =



1
0
0
...

−1


.

When the graph 𝐺 is given, its spectrum is also determined. However,
the same spectrum may corresponds to different graphs. The properties of
the spectrum usually reflect certain properties of the graph and have been
extensively studied.

Proposition 1. If the maximium degree of a graph 𝐺 is Δ, then 𝜆1 ≤ Δ. In
particular, if 𝐺 is Δ-regular, then 𝜆1 = Δ.

Proof. Let 𝛿 = max𝑖∈[𝑛]
∑𝑛
𝑗=1

��𝑎𝑖 𝑗 �� be the maximum absolute row sum of 𝐴.
We claim that ∥𝐴∥∞ = 𝛿 .1 Here 𝐴 is not necessarily a binary matrix. 1 The 𝑝-norm of a vector x is defined

as ∥x∥𝑝 =
(∑

𝑖 |𝑥𝑖 |𝑝
) 1
𝑝 . Specifically,

when 𝑝 = ∞, ∥x∥∞ = max𝑖 |𝑥𝑖 |. The
𝑝-norm of a matrix 𝐴 is defined as ∥𝐴 ∥𝑝 =

maxx≠0
∥𝐴x∥𝑝
∥x∥𝑝 , which measures the size of

the operator 𝐴.

Choosing x = v1, we have

|𝜆1 |∥v1∥∞ = ∥𝐴𝐺v1∥∞ ≤ ∥𝐴𝐺 ∥∞∥v1∥∞

by definition. If the claim holds, we can further yield that |𝜆1 | ≤ ∥𝐴𝐺 ∥∞ =

𝛿 = Δ. When 𝐺 is Δ-regular, it is easy to verify that 1 is an eigenvector
corresponding to the eigenvalue Δ. Therefore, we have 𝜆1 = Δ.

It remains to prove the claim. We write 𝐴 as 𝐴 = [a1, a2, · · · , a𝑛]. Then
𝐴x = 𝑥1a1 + 𝑥2a2 + · · · + 𝑥𝑛a𝑛 . W.l.o.g, assume that argmax𝑖

∑
𝑖

��𝑎𝑖 𝑗 �� = 1,
i.e., the first row of 𝐴 has the maximum absolute row sum. Note that ∥𝐴x∥∞

∥x∥∞
reaches the peak when x ∈ {−1, 1}𝑛 and each 𝑥𝑖 = sgn(𝑎1𝑖 ). This naturally
yields that ∥𝐴∥∞ = 𝛿 . □

The result shows that 𝜆1 is related to the
degree of the graph. We will see how the
other eigenvalues reflect graph properties.
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2 Rayleigh Quotient

Given 𝐴 ∈ ℝ𝑛×𝑛 and x ∈ ℝ𝑛 \ {0}, the Rayleigh quotient is defined as
𝑅𝐴 (x) ≜ ⟨x,𝐴x⟩

⟨x,x⟩ . By the spectral decomposition theorem, 𝐴 can be written as Unless otherwise stated, we assume 𝐴 is
symmetric.∑𝑛

𝑖=1 𝜆𝑖v𝑖v
𝑇
𝑖 where {v1, v2, . . . , v𝑛} is a group of orthonormal eigenvectors of

𝐴 corresponding to eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛 respectively.
We can write x as

∑𝑛
𝑖=1 𝑎𝑖v𝑖 for some constants 𝑎1, 𝑎2 . . . , 𝑎𝑛 . Then

⟨x, x⟩ = ⟨
𝑛∑
𝑖=1

𝑎𝑖v𝑖 ,
𝑛∑
𝑗=1

𝑎 𝑗v𝑗 ⟩ =
∑

𝑖, 𝑗 ∈[𝑛]
𝑎𝑖𝑎 𝑗 ⟨v𝑖 , v𝑗 ⟩ =

𝑛∑
𝑖=1

𝑎2𝑖

and

𝐴x =

(
𝑛∑
𝑖=1

𝜆𝑖v𝑖v𝑇𝑖

) (
𝑛∑
𝑗=1

𝑎 𝑗v𝑗

)
=

∑
𝑖, 𝑗 ∈[𝑛]

𝜆𝑖𝑎 𝑗v𝑖 ⟨v𝑖 , v𝑗 ⟩ =
𝑛∑
𝑖=1

𝜆𝑖𝑎𝑖v𝑖 .

Similarly,

⟨x, 𝐴x⟩ = ⟨
𝑛∑
𝑗=1

𝑎 𝑗v𝑗 ,
𝑛∑
𝑖=1

𝜆𝑖𝑎𝑖v𝑖⟩ =
𝑛∑
𝑖=1

𝜆𝑖𝑎
2
𝑖 .

Therefore, 𝑅𝐴 (x) = ⟨x,𝐴x⟩
⟨x,x⟩ =

∑𝑛
𝑖=1 𝜆𝑖𝑎

2
𝑖∑𝑛

𝑖=1 𝑎
2
𝑖
. With this form of Rayleigh quotient,

we can introduce the Courant-Fischer theorem, which gives a variational
characterization of the eigenvalues.

Claim 2. 𝜆1 = maxx≠0 𝑅𝐴 (x)

Proof. Since 𝑅𝐴 (x) =
∑𝑛

𝑖=1 𝜆𝑖𝑎
2
𝑖∑𝑛

𝑖=1 𝑎
2
𝑖

=
∑𝑛
𝑖=1

𝑎2𝑖∑𝑛
𝑗=1 𝑎

2
𝑗
𝜆𝑖 achieves the maximum when

the weight concentrates on 𝜆1, we have maxx≠0 𝑅𝐴 (x) = 𝑅𝐴 (v1) = 𝜆1. □

With the same argument, we have 𝜆2 = maxx≠0,x⊥v1 𝑅𝐴 (x). This can be
generalized to the 𝑘-th largest eigenvalue:

𝜆𝑘 = max
x≠0

x⊥span(v1,...,v𝑘−1 )

𝑅𝐴 (x).

We also have
𝜆𝑘 = max

𝑉 ⊆ℝ𝑛
d𝑖𝑚 (𝑉 )=𝑘

min
x∈𝑉 \{0}

𝑅𝐴 (x). (1)

Equation (1) can be interpreted as the competition between the max
player and min player. The best choice of the max player is to set 𝑉 =

span(v1, . . . , v𝑘 ) and the min player will choose x = v𝑘 to minimize 𝑅𝐴 (x).

Proposition 3. For a simple 𝑑-regular graph 𝐺 = (𝑉 , 𝐸), 𝐺 is connected iff
𝜆2 ≠ 𝑑 .

Proof. Recall that v1 = 1√
𝑛
· 1 for 𝑑-regular graphs. Then by the Courant-

Fischer theorem, 𝜆2 = maxx≠0,x⊥1 𝑅𝐴𝐺 (x). Note that

𝑅𝐴𝐺 (x) =
∑

(𝑖, 𝑗) ∈𝐸 2𝑥𝑖𝑥 𝑗∑𝑛
𝑖=1 𝑥

2
𝑖

= 𝑑−
𝑑
∑𝑛
𝑖=1 𝑥

2
𝑖 −

∑
(𝑖, 𝑗) ∈𝐸 2𝑥𝑖𝑥 𝑗∑𝑛

𝑖=1 𝑥
2
𝑖

= 𝑑−
∑

(𝑖, 𝑗) ∈𝐸
(
𝑥𝑖 − 𝑥 𝑗

)2∑𝑛
𝑖=1 𝑥

2
𝑖

.

Therefore 𝜆2 = 𝑑 iff
(
𝑥𝑖 − 𝑥 𝑗

)2 = 0 for all (𝑖, 𝑗) ∈ 𝐸. Since x ⊥ 1,∑
(𝑖, 𝑗) ∈𝐸

(
𝑥𝑖 − 𝑥 𝑗

)2 = 0 indicates that 𝐺 is not connected. □
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Proposition 4. Suppose 𝐺 = (𝑉 , 𝐸) is a simple 𝑑-regular graph which is
connected. Then 𝐺 is bipartite iff 𝜆𝑛 = −𝑑 .

Proof. By the Courant-Fischer theorem,

𝜆𝑛 = min
x≠0

𝑅𝐴𝐺 (x) = min
x≠0

∑
𝑖, 𝑗 ∈[𝑛] 𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗∑𝑛

𝑖=1 𝑥
2
𝑖

.

Note that∑
𝑖, 𝑗 ∈[𝑛] 𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗∑𝑛

𝑖=1 𝑥
2
𝑖

=

∑
(𝑖, 𝑗) ∈𝐸 2𝑥𝑖𝑥 𝑗∑𝑛

𝑖=1 𝑥
2
𝑖

+ 𝑑 − 𝑑 =

∑
(𝑖, 𝑗) ∈𝐸

(
𝑥𝑖 + 𝑥 𝑗

)2∑𝑛
𝑖=1 𝑥

2
𝑖

− 𝑑.

Therefore 𝜆𝑛 = −𝑑 iff 𝑥𝑖 = −𝑥 𝑗 for all (𝑖, 𝑗) ∈ 𝐸. This indicates that 𝐺 is
bipartite. □

Now we prove that 𝜆1 is least the average deree of 𝐺 .

Theorem 5. 𝑑ave ≤ 𝜆1. 2 2 Here 𝑑𝑎𝑣𝑒 denotes the average degree∑
𝑣∈𝑉 deg(𝑣)

|𝑉 | .
Proof. Using Courant-Fischer, we have

𝜇1 = max
x≠0

xT𝐴x
xTx

≥ 1T𝐴1
1T1

=

∑
𝑖, 𝑗 ∈[𝑛] 𝑎𝑖 𝑗

𝑛
=

∑
𝑖 deg(𝑖)
𝑛

= 𝑑ave.

□

3 Laplacian Matrix

When the graph is not necessarily regular, it is convenient to normalize its
first eigenvalue.

3.1 The Spectrum of Laplacian Matrix

Let 𝐴𝐺 =
(
𝑤𝑖 𝑗

)
𝑖, 𝑗 ∈[𝑛] be the adjacent matrix of some graph 𝐺 (prob-

ably weighted) and define𝑤𝑖 =
∑𝑛
𝑗=1𝑤𝑖 𝑗 for all 𝑖 ∈ [𝑛]. Let 𝐷𝐺 =

diag(𝑤1,𝑤2, . . . ,𝑤𝑛). The Laplacian matrix of 𝐺 is defined as 𝐿𝐺 = 𝐷𝐺 −𝐴𝐺 .
With the definition of Laplacian matrix, we can turn to consider the

spectrum of 𝐿𝐺 instead of 𝐴𝐺 . For example, when 𝐺 is 𝑑-regular, 𝐿𝐺 = 𝑑𝕀 −
𝐴𝐺 . Let 𝛾1 ≤ 𝛾2 ≤ · · · ≤ 𝛾𝑛 be the eigenvalues of 𝐿𝐺 and 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛
be the eigenvalues of 𝐴𝐺 . Then 𝛾𝑖 = 𝑑 − 𝜆𝑖 by definition and we have 𝛾1 = 0.
We claim that this also applies to general graphs.

Lemma 6. xT𝐿𝐺x =
∑

{𝑖, 𝑗 }∈𝐸 𝑤𝑖 𝑗
(
𝑥𝑖 − 𝑥 𝑗

)2.
For a weighted graph𝐺 , 𝐸 ={
{𝑖, 𝑗 }

�� 𝑤𝑖 𝑗 ≠ 0
}
.
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Proof. This can be proved by a direct calculation:∑
{𝑖, 𝑗 }∈𝐸

𝑤𝑖 𝑗
(
𝑥𝑖 − 𝑥 𝑗

)2 = ∑
{𝑖, 𝑗 }∈𝐸

𝑤𝑖 𝑗
(
𝑥2𝑖 − 2𝑥𝑖𝑥 𝑗 + 𝑥2𝑗

)
=

∑
{𝑖, 𝑗 }∈𝐸

𝑤𝑖 𝑗
(
𝑥2𝑖 + 𝑥2𝑗

)
− 2

∑
{𝑖, 𝑗 }∈𝐸

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗

=
∑
𝑖∈𝑉

𝑥2𝑖

∑
𝑗∼𝑖
𝑤𝑖 𝑗 +

∑
𝑖∈𝑉

𝑥2𝑖𝑤𝑖𝑖 − 2
∑

{𝑖, 𝑗 }∈𝐸
𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗

=
∑
𝑖∈𝑉

𝑥2𝑖𝑤𝑖 +
∑
𝑖∈𝑉

𝑥2𝑖𝑤𝑖𝑖 −
( ∑
𝑖, 𝑗 ∈𝑉

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗 +
∑
𝑖∈𝑉

𝑤𝑖𝑖𝑥
2
𝑖

)
=

∑
𝑖∈𝑉

𝑥2𝑖𝑤𝑖 −
∑
𝑖, 𝑗 ∈𝑉

𝑤𝑖 𝑗𝑥𝑖𝑥 𝑗

= xT𝐷𝐺x − xT𝐴𝐺x = xT𝐿𝐺x.

□

Equipped with Lemma 6, we then prove our claim.

Claim 7. For any graph 𝐺 with𝑤𝑖 𝑗 ≥ 0, 𝛾1 (𝐿𝐺 ) = 0.

Proof. By the Courant-Fischer theorem,

𝛾1 (𝐿𝐺 ) = min
x≠0

xT𝐿𝐺x
xTx

= min
x≠0

∑
{𝑖, 𝑗 }∈𝐸 𝑤𝑖 𝑗

(
𝑥𝑖 − 𝑥 𝑗

)2∑𝑛
𝑖=1 𝑥

2
𝑖

≥ 0

where the second equation follows from Lemma 6. Furthermore,

𝛾1 (𝐿𝐺 ) ≤
1T𝐿𝐺1
1T1

= 0.

Therefore, we have 𝛾1 (𝐿𝐺 ) = 0. □

Example 1 (Complete Graph). When 𝐺 is a complete graph 𝐾𝑛 ,

𝐿𝐺 =


𝑛 − 1 0 · · ·
0 𝑛 − 1
...

. . . 0
0 𝑛 − 1


−


0 1 · · ·
1 0
...

. . . 1
1 0


.

Pick v ⊥ 1. That is,
∑𝑛
𝑖=1 v(𝑖) = 0, or equivently, 𝑣 (1) = −∑𝑛

𝑖=2 v(𝑖). Then

𝐿𝐺v(1) = (𝑛 − 1)v(1) −
𝑛∑
𝑖=2

v(𝑖) = 𝑛v(1).

Similarly we have 𝐿𝐺v(𝑖) = 𝑛v(𝑖) for every other 𝑖 ∈ [𝑛] and thus 𝐿𝐺v = 𝑛v
for all v ⊥ 1. Therefore, the spectrum of 𝐿𝐾𝑛 is 0, 𝑛, 𝑛, . . . , 𝑛, which respectively
corresponds to the eigenvectors 1 and the 𝑛 − 1 independent vectors that are
perpendicular to 1.
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Example 2 (Star Graph). When 𝐺 is a star,

𝐿𝐺 =


𝑛 − 1 0 · · ·
0 1
...

. . . 0
0 1


−


0 1 · · · 1
1 0
...

. . . 0
1 0 0


=


𝑛 − 1 −1 · · · −1
−1 1
...

. . . 0
−1 0 1


.

1

2 3 n· · ·
Let e𝑖 = (0, 0, . . . , 0, 1, 0, . . . , 0) be a unit vector where only the 𝑖-th entry

is 1. Then for every 𝑖, 𝑗 ≥ 2 and 𝑖 ≠ 𝑗 , 𝑒𝑖 − 𝑒 𝑗 is an eigenvector of 𝐿𝐺 with

eigenvalue 1. Since dim
(
span

({
𝑒𝑖 − 𝑒 𝑗

}
𝑖≠𝑗
𝑖,𝑗≥2

))
= 𝑛 − 2, it only needs to

determine the remaining one eigenvalue (we have already known that 𝜆1 = 0).
Note that

Tr(𝐿𝐺 ) = 𝑛 − 1 + 𝑛 − 1 =
𝑛∑
𝑖=1

𝜆𝑖 = 0 + (𝑛 − 2) + 𝜆𝑛 .

Therefore, we have 𝛾𝑛 = 𝑛. It is easy to verify that the eigenvector corresponds
to 𝛾𝑛 is [1 − 𝑛 1 · · · 1]T.
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