
Algorithms for Big Data (V) (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Guoliang Qiu

Last modified on Nov 2, 2020

Consider a stream of numbers of σ = 〈a1, · · · ,am〉 where ai ∈ [n] and its frequency vector f =
(f1, · · · , fn). In previous lectures, we learnt algorithms for following tasks:

• Counting the number of elements in the stream σ , i.e., ‖f ‖1.

• Counting the number of distinct elements in the stream σ , i.e., ‖f ‖0.

• Estimate the frequency fa of a data a ∈ [n]. This implies that we can estimate ‖f ‖∞.

Today we will introduce the AMS estimator which can estiamte all ‖f ‖k for k ≥ 1. At last, we will start
the topic of graph streams.

1 The “Reservoir Sampling” Algorithm

Before showing how to compute the norm of f , we first consider the following problem: how to uniformly
sample ai ∈ [n] in a stream 〈a1, · · · ,am〉 efficiently? This is a computational task which has been widely
used in streaming algorithms. It can be done by usingO(n · logm) space trivially. A interesting trick called
the “Reservoir Sampling” algorithm described below can reduce the cost to O(logm + logn).

Algorithm 1 The Reservoir Sampling Algorithm
Init:
x = 0, r = 0.
On Input y:
x ← x + 1.
With probability 1

x , r ← x .
Output:
Output r .

Lemma 1. For any i ∈ [m], Pr [r = i] = 1
m in the Reservoir Sampling algorithm.

Proof. We prove it by induction on m. For the base case m = 1, the algorithm simply outputs 1. Now
assumem > 2 and the lemma holds for smallerm. Upon receiving am , we update r ←m with probability
1
m . So Pr [r =m] = 1

m . For other k < m, the algorithm outputs r = k if and only if r = k before receiving
am and r is not updated. By induction hypothesis, the probability is Pr [r = i] = 1

m−1 ·
m−1
m = 1

m . □

Furthermore, we can get the following corollary,

1

Corollary 2. In the Reservoir Sampling algorithm, if we introduce variable z and update z = y when updating
r , then for any a ∈ [n], Pr [z = a] = fa

m .

2 AMS Estimator for Fk

In this section, we introduce the AMS algorithm to estimate Fk :=
!

a∈[n] f
k
a . The high level overview of

the algorithm is the following 3 steps,

1. Pick J ∈ [m] uniformly at random using the Reservoir Sampling algorithm,

2. Compute the number of elements equal to a J after the J -th position, i.e., r :=
""#j ≥ J : aj = a J

$"",
3. Outputm(rk − (r − 1)k).

The AMS estimator for Fk is described in Algorithm 2,

Algorithm 2 The AMS Estimator for Fk
Init:
m ← 0,a ← 0, r ← 0.
On Input y:
m ←m + 1.
With probability 1

m , a ← y, r ← 0.
if y = a then r ← r + 1.
end if
Output:
F̂k =m · (rk − (r − 1)k).

The algorithm consumes O(logm + logn) bits of memory. Now we shall prove that the estimate F̂k is
close to Fk with high probability. The expectation of F̂k is

E
%
F̂k
&
=

'
x ∈[n]

Pr [a = x] · E
%
F̂k

"" a = x
&

=
'
x ∈[n]

fx
m

·m · E
(
rk − (r − 1)k

""" a = x
)
(Corollary 2)

=
'
x ∈[n]

fx
m

·m ·
fx'
r=1

1
fx

*
rk − (r − 1)k

+

=
'
x ∈[n]

fx
m

·m · f k−1x

=
'
x ∈[n]

f kx .

2

The variance of F̂k is

Var
%
F̂k
&
≤ E

%
F̂ 2k
&
=

'
x ∈[n]

Pr [a = x] · E
%
F̂ 2k |a = x

&

=
'
x ∈[n]

fx
m

·m2 ·
fx'
r=1

1
fx

· (rk − (r − 1)k) · (rk − (r − 1)k)

≤
'
x ∈[n]

m · fx
k'
r=1

1
fx

· k · rk−1(rk − (r − 1)k) (Mean-Value theorem)

≤
'
x ∈[n]

m · k · f 2k−1x = k
,-
.
'
x ∈[n]

fx
/0
1
,-
.
'
x ∈[n]

f 2k−1x
/0
1
.

In the above equation,
2!

x ∈[n] fx
3
= F1 and

2!
x ∈[n] f

2k−1
x

3
= F2k−1. In order to use the Chebyshev

inequality, we aim to compare F1F2k−1 with F 2k . First, we denote a∗ := argmaxx fx ,

,-
.
'
x ∈[n]

fx
/0
1
,-
.
'
x ∈[n]

f 2k−1x
/0
1
≤ ,-
.
'
x ∈[n]

fx
/0
1
· f k−1a∗

,-
.
'
x ∈[n]

f kx
/0
1

(♠)
≤

'
x ∈[n]

*
f kx

+ 1
k · ,-

.
'
x ∈[n]

f kx
/0
1

k−1
k

· Fk

(♥)
≤ n1−

1
k · F 2k ,

where (♠) comes from the fact that f k−1a∗ =
2
f ka∗

3 k−1
k ≤

2!
x ∈[n] f

k
x
3 k−1

k and (♥) follows from Jensen’s
inequality:

n ·
'
x ∈[n]

1
n

*
f kx

+ 1
k ≤ n · ,-

.
'
x ∈[n]

1
n
f kx

/0
1

1
k

= n1−
1
k · F

1
k
k .

In conclusion, we have Var
%
F̂k
&
≤ kn1−

1
k F 2k . Applying Chebyshev’s inequality gives

Pr
%""F̂k − Fk

"" ≥ ϵFk
&
≤ kn1−

1
k

ϵ2
.

Using the Average and Median tricks, we can boost the performance of AMS such that

Pr
%""F̂k − Fk

"" ≥ ϵFk
&
≤ δ ,

with O
*
1
ϵ 2 log

1
δ kn

1− 1
k (logm + logn)

+
bits of memory.

3 Graph Stream

In this section, we will introduce the graph streaming model. Suppose we have a graph with n vertices
whose edges are unknown. A sequence of updates on the edge set comes in a streaming fashion. That is,

3

each time we receive an update of an edge (u,v,+\−) and may need to answer a certain query about some
graph property on the graph in hand. If one stores all the edges of the graph, it cost O(n2) spaces in the
worst case. Therefore, it is natural to ask whether one can correctly answer queries of graph properties
using less memory. It seems that for many basic graph properties including the connectedness of the graph,
Ω(n) space is necessary (and this will be rigorously proved in the class a few weeks later!). So in this case
we no longer expect sublinear space algorithms.

3.1 Connectedness

First let’s look at the connectedness of a graph. To determine whether a graph is connected, we only need
to maintain a spanning forest F of it. The details are described in Algorithm 3.

Algorithm 3 The Connectedness Algorithm
Init:
F ← ∅, flag ← 0.
On Input {u,v}:
if flag = 0 and F ∪ {{u,v}} has no cycle then

F ← F ∪ {(u,v)};
if |F | = n − 1 then flag ← 1
end if

end if
Output:
Output flag.

It is clear that the algorithm usesO(n logn)memory since at most the names of n − 1 edges need to be
stored. Its correctness is also clear and thus we omit the proof.

3.2 Bipartiteness

A similar problem is to determine whether the graph is bipartite. We still maintain a spanning forest of
the graph and test whether there are odd cycles. The algorithm is described in Algorithm 4.

We shall prove the correctness of the algorithm . The key point is that a graph is bipartite if and only
if it has no odd cycles. If flag = 0, we know that there must exist an odd cycle in G, therefore it is non-
bipartite. Otherwise, if flag = 1, there are no odd cycles in F . This means that there exists a 2-proper
coloring of F , i.e., one can color the vertices with two colors so that the two ends of each edge in F receive
different color. The 2-proper coloring can be extended to the whole G. To see this, we only need to check
that the ends of those edges in E(G) \ F are not monochromatic. In fact, for each e = {u,v} ∈ E(G) \ F ,
F ∪ e must contain an even cycle. So u and v are in different colors.

4

Algorithm 4 The Bipartiteness Testing Algorithm
Init:
F ← ∅, flag ← 1.
On Input {u,v}:
if flag = 1 then

if F ∪ {{u,v}} has no cycle then
F ← F ∪ {(u,v)};

else
if F ∪ {(u,v)} has an odd cycle then flag ← 0
end if

end if
end if
Output:
Output flag.

5

