
Algorithms for Big Data (IV) (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Guoliang Qiu

Last modified on Oct 28, 2020

In today’s lecture, we will introduce some algorithms for the frequency estimation problem in the
streaming model.

1 The Problem

In the streaming model, one may need to know the number of occurrences of a specific element in the
data stream. For example, a network router may query the click numbers of a particular visitor. Formally,
consider a stream of numbers of 〈a1, · · · ,am〉 where ai ∈ [n] and its frequency vector f = (f1, · · · , fn). We
want to estimate fa for each a ∈ [n].

In the following sections, we will introduce three different algorithms for the frequency estimation
problem. The first one, the Misra-Gries algorithm, is a deterministic algorithm but has the drawback that
it cannot apply to the so-called turnstile model which will be defined later. After that, we introduce the
Count Sketch and Count Min algorithms. Both of them work well in the turnstile model but have different
performance guarantees.

2 The Misra-Gries Algorithm

If we do not limit the use of the memory, then we can use a Hash tableA to faithfully record the frequency
vector f . This require us to store n numbers, and each of which costs logm bits. On the other hand, if we
only allow A to store say k numbers, how can we maintain the table so that we can recover the count of
any number in the stream with reasonable accuracy? The idea of Misra-Gries is simple: The table A keeps
at most the count of k numbers seen so far. Once there comes a new number whose count is not recorded
and the table A is full, the algorithm decreases the count of each number in A. The algorithm is described
in Algorithm 1, The memory cost is clearly O(k logm). For the accuracy of the estimation, we claim that
for each j ∈ [n], the output f̂j satisfies

fj − ⌊ m

k + 1
⌋ ≤ f̂j ≤ fj .

The bound f̂j ≤ fj is obvious, so we should only explain why fj − ⌊ m
k+1⌋ ≤ f̂j . Consider those rounds of

the algorithm where the gap between f̂j and fj enlarges. It must be the case that in these rounds, we were
decreasing the counts for each of the k elements in A. Moreover, the number y we immediately received
in this round is not recorded in A. Therefore each increment of the gap between f̂ and f is witnessed
by k + 1 distinct positions in the input stream. There are m numbers in the stream in total, so we have
fj − ⌊ m

k+1⌋ ≤ f̂j .

1



Algorithm 1Misra-Gries Algorithms for Frequency-Estimation
Init:
A Table A (A set of pairs 〈key, value〉 and the size of the table is k)
On Input y:
if y ∈ keys(A) then A[y] ← A[y] + 1
else

if |keys(A)| ≤ k − 1 then A[y] ← 1
else

for all l ∈ keys(A) do
A[l] ← A[l] − 1
if A[l] = 0 then

Remove l from A
end if

end for
end if

end if
Output: On query j,
if j ∈ keys(A) then

f̂j = A[j]
else

f̂j = 0
end if

One main drawback of the Misra-Gries algorithm is that it does not apply to the turnstile model. In
the turnstile model, instead of receiving a simple aj in each round, the algorithm receives a pair (aj ,∆j )
meaning ∆j copies of aj arrive at the same time. Therefore we would equivalently have the frequency
faj ← faj + ∆j . Note that the number ∆j can even be negative.

3 The Count-Sketch Algorithm

The Count-Sketch algorithm is described in Algorithm 2.

Algorithm 2 Count Sketch
Init:
An array C[j] for j ∈ [k] where k = 3

ϵ 2 .
A random Hash function h : [n] → [k] from a 2-universal family.
A random Hash function д : [n] → {−1, 1} from a 2-universal family.
On Input (y,∆):
C[h(y)] ← C[h(y)] + ∆ · д(y)
Output: On query a:
Output f̂a = д(a) ·C[h(a)].

Now we shall prove that the estimate f̂a is close to fa with high probability. Let X = f̂a be the output
on the query a and for every j ∈ [n], let Yj be the indicator of h(j) = h(a). Then we can represent the

2



random variable X as:

X = д(a) ·
!

n"
j=1

fj · д(j) · Yj

#
= fa +

"
j ∈[n]\{a }

fj · д(a) · д(j) · Yj = fa .

To prove concentration, we compute the variance of X . Let Z :=
$

j ∈[n]\{a } fj · д(a) · д(j) · Yj , then
X = fa + Z and Var [X ] = Var [Z ]. We first analyze E

%
Z 2& .

E
%
Z 2& = E

'(((()
*+
,

"
j ∈[n]\{a }

fj · д(a) · д(j) · Yj
-.
/
2011112

= E
'(((()

"
j ∈[n]\{a }

f 2j · Y 2
j +

"
j, j′ ∈[n]\{a }:j!j′

fj · fj′ · д(j) · д(j
′) · Yj · Yj′

011112
= E

'(((()
"

j ∈[n]\{a }
f 2j · Y 2

j

011112
=

"
j ∈[n]\{a }

f 2j · E
%
Y 2
j
&
.

Note that for every j ! a,

E
%
Y 2
j
&
= E

%
Yj
&
= Pr [h(j) = h(a)] = 1

k
.

Therefore

Var [X ] = E
%
Z 2& − (E [Z ])2 =

$
j ∈[n]\{a } f

2
j

k
=

‖f ‖22 − f 2a
k

.

Using the Chebyshev inequality,

Pr
3444 f̂a − fa

444 ≥ ϵ ‖f−a ‖2
5
≤ 1

kϵ2
=

1
3
.

where ‖f−a ‖2 :=
6
‖f ‖22 − f 2a .

The memory cost of the above algorithm is O( 1
ϵ 2 logm + logn). We can use the median trick to boost

the success probability and obtain:

Pr
3444 f̂a − fa

444 ≥ ϵ ‖ f−a ‖2
5
≤ δ ,

with memory cost O
7
1
ϵ 2 log

1
δ logm + log 1

δ logn
8
.

The word “sketch” in the name of the algorithm is an important notion in streaming algorithms. Given
a stream σ , the algorithm in fact computes a data structure C so that one can retrieve information on
frequencies from C . The object C can be viewed as a “summary” of the information in σ . Moreover, one
can design an algorithm A so that given two summaries C1 and C2 with respect to two streams σ1 and σ2
respectively, A(C1,C2) is the summary of σ1 ◦ σ2, the concatenation of σ1 and σ2.

In fact, in the Count-Sketch algorithm, the table C can be viewed as a vector in Rk , and the mapping
from f ∈ Rn to C ∈ Rk is linear. Namely there exists a matrix A so that Af = C . So for two streams
σ1 and σ2 with corresponding frequency vectors f1 and f2, we have A(f1 + f2) = Af1 + Af2. Therefore the
“combing algorithm A” for the Count-Sketch algorithm is a linear operator. A sketching algorithm like
this is sometimes called “linear sketching”.

3



4 Count Min

Another simple algorithm that can be applied to the turnstile model for estimating frequencies is Count-
Min. However, in the lecture, we assume each input (aj ,∆j satisfies ∆j > 0. How to drop the requirement
has been left as an exercise.

Algorithm 3 Count Min
Init:
An array C[1, · · · , t][1, · · · ,k] where t = ⌈log 1

δ ⌉ and k =
2
ϵ .

Choose t independent random Hash functions h1, · · · ,ht : [n] → [k] from a 2-universal family.
On Input (y,∆):
For each i ∈ [t], C[i][hi (y)] ← C[i][hi (y)] + ∆
Output: On query a:
Output f̂a = min1≤i≤t C[i][hi (a)].

Given a, i , we defineYi, j as the indicator random variable ofhi (a) = hi (j). LetXi := C[i][hi (a)]− fa ≥ 0,
then Xi =

$
j ∈[n]\{a } fj · Yi, j . Therefore,

E [Xi ] :=
"

j ∈[n]\{a }
fjE

%
Yi, j

&
=

‖ f−a ‖1
k
.

where ‖ f−a ‖1 :=
$

j ∈[n]\{a } fj .
According to the Markov inequality, we can show that

Pr
%
Xi ≥ ϵ ‖ f−a ‖1

&
≤ 1

kϵ
=

1
2
,

Due to the fact that the hash function h1, · · · ,ht are independent, we have

Pr
3444 f̂a − fa

444 ≥ ϵ ‖ f−a ‖1
5
≤ 2−t = δ .

The algorithm computes a linear sketch using O
9 1
ϵ log

1
δ · logm + log 1

δ logn
:
bits of memory.

4


