
Algorithms for Big Data (III) (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Guoliang Qiu

Last modified on Oct 20, 2020

Today, we first review the construction of the universal hash family and provide a construction of
strongly universal hash family. Thenwe introduce two algorithms to count the number of distinct elements
in the streaming model.

1 Review the Construction of the Universal Hash Function Families

1.1 Universal Hash Function Families

Let H be a family of functions from [m] to [n] wherem ≥ n. We call H k-universal if for every distinct
x1, · · · ,xk ∈ [m], we have

Prh∈H [h(x1) = h(x2) = · · · = h(xk)] ≤
1

nk−1

Moreover, we call H strongly k-universal if for every distinct x1, · · · ,xk ∈ [m] and y1, · · · ,yk ∈ [n],
we have

Prh∈H
!"

h(xi) = yi
#
=

1
nk
.

1.2 The Construction of 2-Universal Hash Family

Suppose we want to construct the hash functions from [m] to [n]. First, we choose a prime p ≥ m and let

ha,b (x) = ((ax + b) mod p) mod n.

Last time, we have already proved the following theorem.

Theorem 1. H = {ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1} is a 2-universal hash family.

In the next section, we first show how to turn the previous construction into a strongly 2-universal
hash family.

2 Strongly 2-Universal Hash Family

2.1 Base Case

First, when m = n = p are primes, then we can modify the previously constructed H to get a strongly
2-universal family. In this case, we have

1

Theorem 2. H = {ha,b (x) = (ax + b) mod p : 0 ≤ a,b ≤ p − 1} is a strongly 2-universal family.

To prove this theorem, we exploit the following lemma.

Lemma 3. The equation ax + b = 0 mod p has unique solution (in Fp) if a ! 0 and p is a prime.

Proof. The equations ha,b (x1) = y1 and ha,b (x2) = y2 are equivalent to

ax1 + b = y1 mod p, ax2 + b = y2 mod p.

They have a unique solution

a =
y2 − y1
x2 − x1

mod p, b = y1 − ax1 mod p.

Therefore, we have

Prha,b ∈H
$
ha,b (x1) = y1 ∧ ha,b (x2) = y2

%
=

1
p2
.

□

2.2 General Case

We can naturally generalizem = p tom = pk . Write every number x in base p, i.e.,

x =
k−1&
i=0

xi · pi .

Then for every ā = (a0,a1, · · · ,ak−1), with 0 ≤ ai ≤ p − 1 and 0 ≤ b ≤ p − 1, define

hā,b (x) =
'
k−1&
i=0

aixi + b

(
mod p.

Theorem 4. H := {hā,b : ā ∈ Fkp ,b ∈ Fp } is a strongly 2-universal hash family.

Proof. Let x ,y ∈ Fpk be two numbers differing on the position i in their base p form, that is, xi ! yi . For
every u,v ∈ {0, 1, · · · ,p − 1}, we have equations

)****+
****,

aixi + b = (u −
&
j!i

ajx j) mod p

aiyi + b = (v −
&
j!i

ajyj) mod p

For fixed x ,y,u,v and {aj }j!i , a unique pair (ai ,b) (out of p2 pairs) is determined. Therefore,

Prhā,b ∈H
$
hā,b (x) = u ∧ hā,b (y) = v

%
=

1
p2
.

□

2

3 Counting Distinct Elements

In this section, we discuss another interesting problem in the streaming model.
Recall that, we are given a sequence of numbers 〈a1,a2, · · · ,am〉 where each ai ∈ [n]. The sequence of

numbers defines a frequency vector f = (f1, · · · , fn) where fi = |{k ∈ [m] : ak = i}|. We want to compute
the number d = |{i ∈ [n] : fi > 0}|. The value d is the number of distinct elements in the stream.

3.1 The AMS Algorithm

The algorithm is originally described by Flajolet and Martin and the version presented here is due to Alon,
Matias and Szegedy.

We first introduce some notations. For every integer p > 0, we use zero(p) to denote number of trailing
zeros of p in binary, i.e., zero(p) ≜ max

-
i : 2idivides p

.
. The description of the algorithm is asfollows:

Algorithm 1 AMS Algorithms for Counting Distinct Elements
Init:
A random Hash function h : [n] → [n] from a 2-universal family.
Z ← 0
On Input y:
if zero(h(y)) > Z then

Z ← zero(h(y))
end if
Output:
d̂ = 2Z+ 1

2 .

In words, the algorithm calculates the maximum number r of trailing zeros of the inputs after applying
certain Hash function and outputs 2r+ 1

2 . Let us see why it works.
First observe that after applying the Hash function h, h(y) is uniform in [n]. Therefore, what we did

in the algorithm for each input y is equivalent to picking a number uniformly in [n] and looking at its
number of trailing zeros. If we assume n = 2k for some integer k , this is equivalent to generate a uniform
length-k binary string and check the number of its trailing zeros. Therefore, the probability that it has s
trailing zeros is 2−s . Therefore, if we know the maximum number of trailing zeros is s amongm uniform
binary strings, 2s should be a good guess ofm.

3.2 The Analysis of the AMS Algorithm

In this section, we rigorously show that Z ≈ log2 d .
For every 0 ≤ r ≤ log2 n, we use a random variableYr to denote the number of h(ai)with trailing zeros

at least r , or Yr ≜ {k ∈ [n] : fk > 0 ∧ zero(h(k)) ≥ r }. Notice that the sequence of variables {Yr }0≤r ≤n
determines the variable Z since Z = maxr {Yr > 0}. Therefore, it is enough to understand the behavior of
Yr .

For every k ∈ [n], we denote Xk,r as the indicator that h(k) has at least r trailing zeros, then we can
decompose that Yr =

/
k ∈[n]:fk>0Xk,r . According to this decomposition, we have:

E [Yr] =
&

0≤k≤n−1
fk >0

E
$
Xk,r

%
=

d

2r
;

3

Var [Yr] =
&

0≤k≤n−1
fk >0

Var
$
Xk,r

%
=

d

2r
,

where the linearity of variance comes from the fact that Xk,r s are pairwise independent variables.
Applying Markov’s inequality, we obtain

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr] =
d

2r
.

Applying Chebyshev inequality, we obtain

Pr [Y = 0] ≤ Pr
0
|Yr − E [Yr]| ≥

d

2r

1
≤ 2r

d

We know that Yr > 0 for all r ≤ Z and Yr = 0 for all r > Z . Therefore, Z cannot be too far from log2 d :

• if Z ≪ log2 d , there exists r such that r ≫ log2 d with Yr = 0, which happens with small probability;

• if Z ≫ log2 d , there exists r such that r ≫ log2 d with Yr > 0, which happens with small probability
as well.

Let us bound the probabilities of above two events respectively. For the first event, if d̂ ≤ d
3 , let r̂ :=

argmaxr ∈N 2r+ 1
2 ≤ d

3 , then

Pr
0
d̂ ≤ d

3

1
= Pr [Z ≤ r̂] = Pr [Yr̂+1 = 0] ≤ 2r̂+1

d
≤

√
2
3

For the second event, if d̂ ≥ 3d , let r̂ := argminr ∈N 2r+ 1
2 ≥ 3d .

Pr
!
d̂ ≥ 3d

#
= Pr [Z ≥ r̂] = Pr [Yr̂ > 0] ≤ d

2r̂
≤

√
2
3

Thus, we have Pr
!
d
3 ≤ d̂ ≤ 3d

#
≥ 1 − 2

√
2

3 .
This algorithm costs O(logn) bits of memory. Moreover, we can apply the standard Median trick to

boost the success probability. Using O(log 1
δ logn) bits of memory, we can obtain

Pr
0
d

3
≤ d̂ ≤ 3d

1
≥ 1 − δ .

3.3 The BJKST Algorithm

The performance of AMS has an obvious drawback: We can only guarantee that d̂ ∈ [d/3, 3d]. The reason
for this coarse bound is simple: We already know that the expected number of uniformly distributed
distinct elements before seeing the first one with r trailing zeros is 2r . On the other hand, the expected
number before seeing the first one with r + 1 trailing zeros is 2r+1. So when we see r trailing zeros, which
number between 2r and 2r+1 − 1 should we guess? The AMS simply guesses 2r+ 1

2 . In fact, if we can store
more information on “how many distinct numbers seen so far has r trailing zeroes”, the guess can be more
accurate.

The following improvement of AMS is due to Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan,
which implements the idea above. See Algorithm 2.

4

The algorithm maintains a bucket B, which stores those y whose zeros(h(y)) is larger than the current
Z. In the BJKST algorithm we set L = c

ϵ 2 for the size of B, the size of B captures the trade-off between
memory consumption and the accuracy of the algorithm, two extreme cases are:

• if L = ∞, B stores all entries, and the algorithm is exact;

• if L = 2, the algorithm is equivalent to AMS.

Algorithm 2 BJKST Algorithms for Counting Distinct Elements
Init:
A random Hash functions h : [n] → [n] from a 2-universal families; Z ← 0,B ← ∅
On Input y:
if zero(h(y)) > Z then

B ← B ∪ {(y, zero(h(y))}
while |B | ≥ c

ϵ 2 do
Z ← Z + 1
Remove all (α , β) with β < Z from β

end while
end if
Output:
d̂ = |B | · 2Z .

3.4 The Analysis of the BJKST Algorithm

Recall Yr =
/

k ∈[n]:fk>0Xk,r is the number of h(ai) with at least r trailing zeros.
Suppose Z = r̂ at the end of the algorithm, then Yr̂ = |B | and d̂ = Yr̂ · 2r̂ . We use A to denote the bad

event that |Yr̂ · 2r̂ − d | ≥ ϵd , or equivalently
2222Yr̂ − d

2r̂

2222 = |Yr̂ − E [Yr̂]| ≥
ϵd

2r̂
= ϵE [Yr̂]

We will bound the probability of A based on the following observation,

• if E [Yr̂] is large, then it is well concentrated.

• For smaller E [Yr̂], we show it is unlikely to happen.

5

Pr [A] =
log2 n&
t=1

Pr
02222Yr̂ − d

2r̂

2222 ≥ ϵd

2r̂
∧ r̂ = t

1

≤
s−1&
t=1

Pr
02222Yt − d

2t

2222 ≥ ϵd

2t

1
+

log2 n&
t=s

Pr [r̂ = t]

=

s−1&
t=1

Pr
02222Yt − d

2t

2222 ≥ ϵd

2t

1
+ Pr

!
Ys−1 >

c

ϵ2

#

≤
s−1&
t=1

2t

ϵ2d
+

ϵ2d

c2s−1

≤ 2s

ϵ2d
+

ϵ2d

c2s−1
= O(1) when choosing 2s = O(ϵ2d).

It remains to look at the memory consumption. We need to store the function h with O(logn) bits of
memory the bucket B with O

3
c
ϵ 2 logn

4
bits of memory. After using the standard Median trick, we totally

consume O(cϵ 2 · logn · log 1
δ) bits of memory.

6

