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Today we first complete the proofs of the concentration inequalities used last time. Then I will intro-
duce the Balls-into-Bins model, a simple yet useful model which can be used to analyze the Hash function,
an important algorithmic tool used in streaming algorithms.

1 Concentration Inequality

We first complete the proof ofMarkov inequality, Chebyshev inequality and Chernoff boundwementioned
last time in this section.

1.1 Markov’s Inequality

Lemma 1 (Markov’s inequality). For every non-negative random variable X and every a > 0, it holds that

Pr [X ≥ a] ≤ E [X ]
a
.

Proof. Let 1[X ≥ a] be the indicator random variable such that 1[X ≥ a] =
!
1, if x ≥ a,

0, otherwise.
Then it holds

that X ≥ a · 1[X ≥ a]. Take the expectation on both sides, we obtain

E [X ] ≥ a · E [1[X ≥ a]] = a · Pr [X ≥ a] .

□

1.2 Chebyshev Inequality

Lemma 2 (Chebyshev Inequality). For every random variable X and every a ≥ 0, it holds that

Pr [|X − E [X ]| ≥ a] ≤ Var [X ]
a2

.

Proof.

Pr [|X − E [X ]| ≥ a] = Pr
"
(X − E [X ])2 ≥ a2

#
≤

E
"
(X − E [X ])2

#
a2

(According to the Markov’s inequality)

=
Var [X ]

a2
.

□
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1.3 Chernoff Bound

Lemma 3 (Chernoff Bound). Let X1, · · · ,Xn be independent Bernoulli trials with E [Xi ] = pi for every i =
1, · · · ,n. Let X = $n

i=1Xi . Then for every 0 < ϵ < 1, it holds that

Pr [|X − E [X ]| ≥ ϵ · E [X ]] ≤ 2 exp
%
−ϵ

2E [X ]
3

&

The main tool to prove Chernoff bound is the moment generating function E
"
etX

#
for a random vari-

able X .

Proof. It holds that

E
"
etX

#
= E

'
et

!n
i=1 Xi

(
=

n)
i=1

E
"
etXi

#

=

n)
i=1

((1 + pi ) + piet )

=

n)
i=1

(1 − (1 − et )pi )

≤
n)
i=1

e−(1−e
t )pi = e−(1−e

t )E[X ]

For every t > 0, we have

Pr [X ≥ (1 + ϵ)E [X ]] = Pr
'
etX ≥ et (1+ϵ )E[X ]

(
≤

E
"
etX

#
et (1+ϵ )E[X ] ≤

e−(1−e
t )E[X ]

et (1+ϵ )E[X ] .

The next step is to find an optimal t to minimize the last term in the above line. By calculating the its
derivative, we can determine that t = log(1 + ϵ) is the minimizer. Plugging this into

Pr [X ≥ (1 + ϵ)E [X ]] ≤
%

eϵ

(1 + ϵ)1+ϵ

&E[X ]
≤ e−ϵ

2E[X ]/3.

We can similarly prove that

Pr [X ≤ (1 − ϵ)E [X ]] ≤ e−ϵ
2E[X ]/2.

Combining the bounds for both lower and upper tails, we finish the proof. □

2 Balls-into-Bins Model

The Balls-into-Bins model is a simple yet important probabilistic model, especially from the randomized
algorithm analysis perspective. In today’s lecture, we focus on them-balls-into-n-bins model. It models
an important object, the hash functions which are central technical tools in streaming algorithms.

First assumem = n. Suppose we throw n balls into n bins uniformly and independently, what is the
(expected) max load (the number of balls in the fullest bin) of bins? We can check that the max load is
logn

log logn · (1+ o(1)) with probability 1− o(1). For simplicity, we show that for some c , Pr
'
X >

c logn
log logn

(
≤ 1

2 .
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For each i = 1, . . . ,n, let the random variable Xi denote the balls in the i-th bin and let X = maxXi .
Suppose we fix k = c logn

log logn for some c , then by the union bound and the Stirling’s formula, we have

Pr [X > k] = Pr [∃i,Xi > k] ≤ n · Pr [Xi > k]

≤ n ·
%
n

k

&
· n−k ≤ n

k!
≤ n · (e

k
)k ≤ 1

2

where n · ( ek )k ≤ 1
2 follows from the fact that

logn +
c logn
log logn

(1 + log log logn − log c − log logn) = logn(−c + 1 − c log c
log logn

+
c log log logn

log logn
)

≤ − log 2 (for sufficiently large n and c).

3 Independence

In this section, we discuss the notion of “independence” in probability theory. (Notice that we only discuss
the discrete random variables.)

• A set of random variables X1, · · · ,Xn are mutually independent if for every index set I ⊆ [n] and
values {xi }i ∈I ,

Pr

*+
i ∈I

Xi = xi

,
=

n)
i=1

Pr [Xi = xi ] .

Obviously, the mutual independence is a very strong condition as it requires the property of “being
independent” for every subset of variables I ⊆ [n]. We can relax the requirement and only ask for
independence for those I ⊆ [n] with |I | ≤ k . This is called k-wise independence.

• A set of random variables X1, · · · ,Xn are k-wise independent if for every index set I ⊆ [n] with
|I | ≤ k , and values {xi }i ∈I ,

Pr

*+
i ∈I

Xi = xi

,
=

n)
i=1

Pr [Xi = xi ] .

We call X1, · · · ,Xn pairwise independent if they are 2-wise independent.

It is clear that mutual independence implies k-wise independence, however, the opposite direction is
not correct. Suppose we have two independent random variables X ,Y ∈R {0, 1}, and a random variable
Z = X ⊕ Y . We know that the random variable Z is also uniformly distributed on {0, 1} and these three
random variables are pairwise independent but not mutually independent.

3.1 Property of Pairwise Independence

We know the linearity property of variance holds for independent random variables. The independence
here can be pairwise independence.
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Theorem 4. For pairwise independent X1, · · · ,Xn , we have

Var [X1 + · · · ,Xn] = Var [X1] + · · · + Var [Xn] .

Proof.

Var [X1 + · · · + Xn] =
n-
i=1

E
"
X 2
i
#
+

-
1≤i<j≤n

E
"
XiX j

#
−
.

n-
i=1

(E [Xi ])2 + 2
-

1≤i<j≤n
E [Xi ] · E

"
X j

# /

=

n-
i=1

0
E
"
X 2
i
#
− (E [Xi ])2)

1
=

n-
i=1

Var [Xi ] .

□

4 Hash Functions

In the model of balls-into-bins, we distribute balls uniformly and independently. This can be implemented
using Hash functions. Hash functions are important data structures that have been widely used in com-
puter science. In this section, we will construct Hash functions with theoretical guarantees.

4.1 Universal Hash Function Families

Let H be a family of functions from [m] to [n] wherem ≥ n. We call H k-universal if for every distinct
x1, · · · ,xk ∈ [m], we have

Prh∈H [h(x1) = h(x2) = · · · = h(xk )] ≤
1

nk−1
.

Moreover, we call H strongly k-universal if for every distinct x1, · · · ,xk ∈ [m] and y1, · · · ,yk ∈ [n],
we have

Prh∈H
'+

h(xi ) = yi
(
=

1
nk

4.2 Balls-into-Bins with 2-Universal Hash Family

We already see in Section 2 that if each ball can be uniformly and independently thrown into a bin, the
max load of n bins isO( log

log logn )with high probability. Nowwe assume the independence is not perfect, say
we distribute them balls using a pairwise universal Hash familyH . This is equivalent to the following:

• First draw a random function h ∈ H ;

• For each i ∈ [m], throw the ball i into bin h(i).

LetXi j be the indicator of the event: i-th ball and j-th ball fall into the same bin and letX =
$

1≤i<j≤m Xi j
be the total number of collisions. Then

E [X ] =
-

1≤i<j≤m
E
"
Xi j

#
≤

%
m

2

&
1
n
<
m2

2n
.
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Assume the max load is Y , which causes
0Y
2
1
≤ X collisions. Then

Pr
2%
Y

2

&
≥ m2

n

3
≤ Pr

2
X ≥ m2

n

3
≤ 1

n
.

Therefore, Pr
'
Y − 1 ≥ m

4
2/n

(
≤ 1

2 . The max load is 1 +
√
2n whenm = n with probability at least 1

2 .
The bound is much worse than the one we obtained using perfect randomness!

4.3 Construction of 2-Universal Family

In this section, we explicitly construct a universal family of Hash functions from [m] to [n].
Let p ≥ m be a prime and let

ha,b (x) = ((ax + b) mod p) mod n.

The family isH = {ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1}.
In the follow, we verify that H constructed above is indeed 2-universal, i.e.,

Lemma 5.

Prha,b ∈H
"
ha,b (x) = ha,b (y)

#
≤ 1

n
, for x ! y

Proof. First, we have if x ! y, then ax + b ! ay + b mod p. Otherwise, the fact that ax + b = k1p + c and
ay+b = k2p+c where 0 ≤ k1,k2 ≤ m implies (x−y)a = (k1−k2)p, which holds only when x = y. Moreover,
(a,b) → (ax+b,ay+b) is a bijection from {1, · · · ,p−1}×{0, · · · ,p−1} to {(u,v) : 0 ≤ u,v ≤ p−1,u ! v}.

This is because

!
ax + b = u mod p

ay + b = v mod p
has the unique solution

5667
668
a =

v − u

y − x
mod p

b = u − ax mod p
.

Therefore,

Prha,b (x )∈H
"
ha,b (x) = ha,b (y)

#
= Pr(u,v)∈F2ρ [u = v mod n]

The number of (u,v) with u ! v is p(p − 1). For each u, the number of values of v with u = v mod n
is at most ⌈pn ⌉ − 1. The probability is therefore at most

p(⌈pn ⌉ − 1)
p(p − 1) ≤ 1

n
.

□
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