
Algorithms for Big Data (Fall 2020)

Instructor: Chihao Zhang
Scribed by: Guoliang Qiu

September 23, 2020

Designing efficient algorithms for large data sets poses challenges for traditional algorithmic tech-
niques in many aspects. This course will mainly focus on three topics developed in processing big data,
including 1) sublinear space algorithms, 2) almost linear-time algorithms, and 3) online algorithms. In the
first part of this course, I will introduce the “streaming model” and related algorithmic design technique.
They are quite different from the algorithms you might have learnt in the algorithm course and are quite
useful for tackling problems with super large input data.

1 Introduction to the Streaming Model

1.1 A Programmer for Routers

Suppose we have a router with limited memory, but need to solve some computational tasks with large
input data such as monitoring the id of devices connecting to it. We can ask the following three natural
questions in this scenario,

• How many numbers in a given data streaming?

• How many distinct numbers?

• What is the most frequent number?

In order to study this problem systematically, we first introduce the streaming model and formally
define the computational problem we are considering in the model.

1.2 Streaming Model

In the streaming model, the input is a sequence 𝜎 = ⟨𝑎1, 𝑎2, · · · , 𝑎𝑚⟩ where each 𝑎𝑖 ∈ [𝑛]. We should
notice that the data is coming one by one which explains where the name streaming comes from. Assume
one can process the input stream using at most 𝑠 bits of memory. We say an algorithm is sublinear if
𝑠 = 𝑜 (min{𝑚,𝑛}). The computational tasks arisen from the streaming model include the following,

• How many numbers (What is𝑚?)

• How many distinct numbers in 𝜎?

• What is the median of 𝜎?

• What is the most frequent number?

1

• · · ·

In today’s lecture, we focus on the first question, i.e., can we design a sublinear algorithm to compute𝑚?

2 Counting the Elements in Streaming Model

2.1 A Naive Idea

It is easy to obtain a simple algorithm to compute𝑚. We can maintain a counter 𝑘 , and whenever one reads
a number 𝑎𝑖 , let 𝑘 = 𝑘 + 1. It is not hard to see that we need ⌈log2𝑚⌉ memory with this naive algorithm.

Certainly, we can ask that whether we can design a clever algorithm with only 𝑜 (log𝑚) memory? It
turns out that computing the exact answer is impossible even with ⌈log2𝑚⌉ − 1 memory. The reason is as
follows: suppose we have an algorithmM using only ⌈log2𝑚⌉ −1memory and denoteM(𝑖) as the output
of the algorithm with a input 𝜎 of length 𝑖 , then there exists 𝑖, 𝑗 ∈ {𝑚} such that 𝑖 ≠ 𝑗 andM(𝑖) =M(𝑗).

Even though we can not get a better algorithm in the exact regime, it is possible to obtain a more
efficient algorithm if we allow approximation, i.e., we want to design an algorithm such that for every
𝜀 > 0, compute a number𝑚 such that

1 − 𝜀 ≤ 𝑚

𝑚
≤ 1 + 𝜀.

2.2 Morris’ Algorithm

The Morris’ algorithm is presented as Algorithms 1, we know that it is a randomized algorithm. Therefore
we look at the expectation of its output.

Algorithm 1 Morris’ Algorithms for Counting Elements
Input: An instance 𝜎 = ⟨𝑎1, 𝑎2, · · · , 𝑎𝑚⟩ where each 𝑎𝑖 ∈ [𝑛].
Output: The length𝑚 of the sequence 𝜎 .

1: Init: A varaible 𝑋 ← 0
2: On Input y: Increase 𝑋 with probability 2−𝑋
3: Output: Output𝑚 = 2𝑋 − 1.

Lemma 1. The output of Morris’ algorithm𝑚 satisfies that its expectation E [𝑚] =𝑚.

Proof. We prove it by induction on𝑚. Since 𝑋 = 1 when𝑚 = 1, we have E [𝑚] = 1. Assume it is true for

2

smaller𝑚, let 𝑋𝑖 denote the value of 𝑋 after processing 𝑖-th input. We have the following fact,

E [𝑚] = E
[
2𝑋𝑚

]
− 1 (1)

=
𝑚∑
𝑖=0

Pr [𝑋𝑚 = 𝑖] · 2𝑖 − 1 (2)

=
𝑚∑
𝑖=0

(
Pr [𝑋𝑚−1 = 𝑖] ·

(
1 − 2−𝑖

)
+ Pr [𝑋𝑚−1 = 𝑖 − 1] · 21−𝑖

)
· 2𝑖 − 1 (3)

=
𝑚−1∑
𝑖=0

Pr [𝑋𝑚−1 = 𝑖] · (2𝑖 + 1) − 1 (4)

= E
[
2𝑋𝑚−1

]
(5)

=𝑚 (6)

where equation 6 holds due to the induction hypothesis.
□

It it now clear thatMorris’ algorithm is an unbiased estimator for𝑚 and uses approximately𝑂 (log log𝑚)
bits of memory. However, for a practical randomized algorithm, we further require its output to concen-
trate on the expectation. That is, we want to establish concentration inequality of the form

Pr [|𝑚 −𝑚 | > 𝜀] ≤ 𝛿

for 𝜀, 𝛿 > 0. It is natural to see that for fixed 𝜀, the smaller 𝛿 is, the better the algorithm will be.

3 Concentration Analysis of Morris’ Algorithm

We need more probabilistic tools to establish the concentration inequalities.

Theorem 2 (Markov’s inequality). For every nonnegative random variable 𝑋 and every 𝑎 ≥ 0, it holds that

Pr [𝑋 ≥ 𝑎] ≤ E [𝑋]
𝑎

Theorem 3 (Chebyshev’s inequality). For every random variable 𝑋 and every 𝑎 ≥ 0, it holds that

Pr [|𝑋 − E [𝑋] | ≥ 𝑎] ≤ Var [𝑋]
𝑎2

In order to apply Chebyshev’s inequality to analyze the Morris’ algorithm, we have to first compute
the variance of𝑚.

Lemma 4.

E
[
(2𝑋𝑚)2

]
=
3
2
𝑚2 + 3

2
𝑚 + 1

3

Proof. We can prove the claim using an induction argument similar to our proof for the expectation. When
𝑚 = 1, E

[
(2𝑋𝑚)2

]
= 4. We assume it is true for smaller𝑚 and use the same notation 𝑋𝑖 . We have that

E [𝑚] = E
[
2𝑋𝑚

]
− 1 (7)

=
𝑚∑
𝑖=0

Pr [𝑋𝑚 = 𝑖] · 22𝑖 (8)

=
𝑚∑
𝑖=0
(Pr [𝑋𝑚−1 = 𝑖] (−2−𝑖) + Pr [𝑋𝑚−1 = 𝑖 − 1] · 21−𝑖) · 22𝑖 (9)

=
𝑚∑
𝑖=0
(Pr [𝑋𝑚−1 = 𝑖] (22𝑖 − 2𝑖) + Pr [𝑋𝑚−1 = 𝑖 − 1] · 2𝑖+1) (10)

=
𝑚−1∑
𝑖=0

Pr [𝑋𝑚−1 = 𝑖] (22𝑖 + 3 · 2𝑖) (11)

= E
[
(2𝑋𝑚−1)2

]
+ 3E

[
2𝑋𝑚−1

]
(12)

=
3
2
𝑚2 + 3

2
𝑚 + 1 (13)

□

With Lemma 4, we can compute the variance as follows,

Var [𝑚] = E
[
𝑚2] − E [

𝑚2] = E
[
(2𝑋𝑚 − 1)2

]
−𝑚2 ≤ 𝑚2

2

Applying Chebyshev’s inequality, we obtain for every 𝜀 > 0,

Pr [|𝑚 −𝑚 | ≥ 𝜀𝑚] ≤ 1
2𝜀2

However, we can observe that as 𝜀 becomes smaller and smaller, the above bound is not useful. Thus, it
is necessary to ask that whether we can improve the concentration inequality? The answer is affirmative
and there are two common tricks work here.

4 Tricks for Boosting the Concentration

4.1 Averaging Trick

The Chebyshev’s inequality tells us that we can improve the concentration by reducing the variance. Thus,
it is necessary to review some properties the variance satisfied first.

• Var [𝑎 · 𝑋] = 𝑎2 · Var [𝑋]

• Var [𝑋 + 𝑌] = Var [𝑋] + Var [𝑌] for mutually independent random variables 𝑋 and 𝑌 .

We can design a new algorithm by independently running Morris’ algorithm 𝑡 time in parallel, and
denote the corresponding outputs be𝑚1, · · · ,𝑚𝑡 . Then the final output is𝑚∗ :=

∑𝑡
𝑖=1𝑚𝑖

𝑡 .

4

Applying Chebyshev’s inequality to𝑚∗:

Pr [|𝑚∗ −𝑚 | ≥ 𝜀𝑚] ≤ 1
𝑡 · 2𝜀2

For 𝑡 ≥ 1
2𝜀2𝛿 , we have

Pr [|𝑚∗ −𝑚 | ≥ 𝜀𝑚] ≤ 𝛿

The new algorithm uses 𝑂
(
log log𝑛
𝜀2𝛿

)
bits of memory. It shows a trade-off between the quality of the

randomized algorithm and the consumption of memory space.

4.2 The Median Trick

We can boost the performance furthermore by the median trick.
We choose 𝑡 = 3

2𝜀2 in the previous algorithm after applying the averaging trick and independently run
it 𝑠 time in parallel. Denote the outputs as𝑚∗1,𝑚

∗
2, · · · ,𝑚∗𝑠 respectively.

It holds that for every 𝑖 = 1, · · · , 𝑠 ,

Pr
[��𝑚∗𝑖 −𝑚�� ≥ 𝜀𝑚]

]
≤ 1

3
.

At last, we output the median𝑚∗∗ of𝑚∗1,𝑚
∗
2, · · · ,𝑚∗𝑠 . To analyze the performance of the new algorithm,

we use the Chernoff bound.

Theorem 5 (Chernoff Bound). Let 𝑋1, · · · , 𝑋𝑛 be independent random variables with 𝑋𝑖 ∈ {0, 1} for every
𝑖 = 1, · · · , 𝑛. Let 𝑋 =

∑𝑛
𝑖=1𝑋𝑖 . Then for every 0 < 𝜀 < 1, it holds that

Pr [|𝑋 − E [𝑋] | > 𝜀 · E [𝑋]] ≤ 2 exp
(
−𝜀

2E [𝑋]
3

)
Then we can apply the Chernoff bound to analyze the result obtained by the Median trick. For every

𝑖 = 1, · · · , 𝑠 , we let 𝑌𝑖 be the indicator of the (good) event��𝑚∗𝑖 −𝑚�� < 𝜀 ·𝑚.

Then 𝑌 ≜
∑𝑠

𝑖=1 𝑌𝑖 satisfies E [𝑌] ≥ 2
3𝑠 . If the median𝑚∗∗ is bad (namely |𝑚∗∗ −𝑚 | ≥ 𝜀 ·𝑚), then at

least half of𝑚∗’s are bad. Equivalently, 𝑌 ≤ 1
2𝑠 . By Chernoff bound,

Pr
[
|𝑌 − E [𝑌] | ≥ 1

6
𝑠

]
≤ 2 exp

(
− 𝑠

72

)
Therefore, for 𝑡 = 𝑂

(
1
𝜀2

)
and 𝑠 = 𝑂

(
log 1

𝛿

)
, we have

Pr [|𝑚∗∗ −𝑚 | ≥ 𝜀𝑚] ≤ 𝛿

This new algorithm use 𝑂 (1
𝜀2
· log 1

𝛿 · log log𝑛) bits of memory.

5

	Introduction to the Streaming Model
	A Programmer for Routers
	Streaming Model

	Counting the Elements in Streaming Model
	A Naive Idea
	Morris' Algorithm

	Concentration Analysis of Morris' Algorithm
	Tricks for Boosting the Concentration
	Averaging Trick
	The Median Trick

