Algorithms for Big Data (VIII)

Chihao Zhang
Shanghai Jiao Tong University

Nov. 8, 2019

Algorithms for Big Data (VIIT)

114



REVIEW

Algorithms for Big Data (VIIT) 214



REVIEW

Last week, we learnt a few graph streaming algorithms.

Algorithms for Big Data (VIIT) 214



REVIEW

Last week, we learnt a few graph streaming algorithms.

Recall that we have the following simple algorithm for counting triangles.

Algorithms for Big Data (VIIT)



REVIEW

Last week, we learnt a few graph streaming algorithms.
Recall that we have the following simple algorithm for counting triangles.

Let f = (fT)Te([n]) be the vector where for T = {x,y, z}, fr = [{{x,y}, {x, z},{y, z}} N E|.
3

Algorithms for Big Data (VIIT)



REVIEW

Last week, we learnt a few graph streaming algorithms.
Recall that we have the following simple algorithm for counting triangles.

Let f = (fT)Te([n]) be the vector where for T = {x,y, z}, fr = [{{x,y}, {x, z},{y, z}} N E|.
3

The algorithm simply returns Fo — 1.5F; + 0.5F, , where F; = ||f||}.

Algorithms for Big Data (VIIT) 214



We can expand Fy — 1.5F; + 0.5F; as

> 0.5 —1.5fr + 1[fy #0l.
TE([T;])

Algorithms for Big Data (VIIl) 314



We can expand Fyp — 1.5F; 4+ 0.5F, as

> 0.5fF — 1.5¢fr + 1[fr #£0].

()

The “polynomial” f(x) = 0.5x? — 1.5x + 1[x # 0] satisfies
> f(0)=1(1)=1(2) =0

> f(3)=1.

Algorithms for Big Data (VIIT)



We can expand Fyp — 1.5F; 4+ 0.5F, as

> 0.5fF — 1.5¢fr + 1[fr #£0].

()

The “polynomial” f(x) = 0.5x? — 1.5x + 1[x # 0] satisfies
> f(0)=1(1)=1(2) =0

> f(3)=1.

The multiplicative error of the algorithm is unbounded!

Algorithms for Big Data (VIIT)



We can expand Fyp — 1.5F; 4+ 0.5F, as

> 0.5fF — 1.5¢fr + 1[fr #£0].

Te('7)

The “polynomial” f(x) = 0.5x? — 1.5x + 1[x # 0] satisfies

> f(0)=1(1)=1(2)=0
> f(3)=1.

The multiplicative error of the algorithm is unbounded!

| leave the analysis of the algorithm as an exercise.

Algorithms for Big Data (VIIT)



COMMUNICATION COMPLEXITY

Algorithms for Big Data (VIIl) 414



COMMUNICATION COMPLEXITY

Suppose we want to compute some function f(x,y) where x € {0,1}* and y € {0, 1}°.

Algorithms for Big Data (VIIT)



COMMUNICATION COMPLEXITY

Suppose we want to compute some function f(x,y) where x € {0,1}* and y € {0, 1}°.

Alice has x and Bob has y, they collaborate to compute f.

Algorithms for Big Data (VIIT)



COMMUNICATION COMPLEXITY

Suppose we want to compute some function f(x,y) where x € {0,1}* and y € {0, 1}°.

Alice has x and Bob has y, they collaborate to compute f.

The compleixty is measured by bits communicated between the two.

Algorithms for Big Data (VIIT)



COMMUNICATION COMPLEXITY

Suppose we want to compute some function f(x,y) where x € {0,1}* and y € {0, 1}°.
Alice has x and Bob has y, they collaborate to compute f.
The compleixty is measured by bits communicated between the two.

We consider one-way communication model, with possible public random coins.

Algorithms for Big Data (VIIT) 414



ExamMPLE: EQUALITY

Algorithms for Big Data (VIIT) 514



ExamMPLE: EQUALITY

1

Consider the function f(x,y) = EQ(x,y) = {O

The one-way complexity of EQ is n.

if x =v;

otherwise,

where x,y € {0, 1}™.

Algorithms for Big Data (VIIT)



ExamMPLE: EQUALITY

1 ifx=vy;

Consider the function f(x,y) = EQ(x,y) =
0 otherwise,

The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

where x,y € {0, 1}™.

Algorithms for Big Data (VIIT)



ExamMPLE: EQUALITY

1 ifx=v;
x=59 where x,y € {0, 1}™.

0 otherwise,

Consider the function f(x,y) = EQ(x,y) = {

The one-way complexity of EQ is n.
This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 422 ... 4 2™ = 2™ — 2 distinct messages.

Algorithms for Big Data (VIIT)



ExAMPLE: EQUALITY

1 ifx=vy;

Consider the function f(x,y) = EQ(x,y) = { where x,y € {0, 1}™.

0 otherwise,
The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 422 ... 4 2™ = 2™ — 2 distinct messages.

By the pigeonhole principle, two different strings x and x’ share the same message.

Algorithms for Big Data (VIll) 514



ExAMPLE: EQUALITY

1 ifx=vy;

Consider the function f(x,y) = EQ(x,y) = { where x,y € {0, 1}™.

0 otherwise,
The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 422 ... 4 2™ = 2™ — 2 distinct messages.

By the pigeonhole principle, two different strings x and x’ share the same message.

Bob can then use y = x to fool the algorithm, a contradiction.

Algorithms for Big Data (VIll) 514



RANDOMNESS IN COMMUNICATION

Algorithms for Big Data (VIIl) 6/14



RANDOMNESS IN COMMUNICATION
We can design a more efficient protocol for EQ by tossing coins.

Algorithms for Big Data (VIIT) 6/14



RANDOMNESS IN COMMUNICATION
We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2™ — 1}.

Algorithms for Big Data (VIIT)



RANDOMNESS IN COMMUNICATION

We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2™ — 1}.

> Alice picks a random prime p € [n?,2n?].
» She sends (p,x mod p) to Bob.

» Bob outputs 1ify mod p =x mod p, and outputs O otherwise.

Algorithms for Big Data (VIIT)



RANDOMNESS IN COMMUNICATION

We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2™ — 1}.

> Alice picks a random prime p € [n?,2n?].
» She sends (p,x mod p) to Bob.

» Bob outputs 1ify mod p =x mod p, and outputs O otherwise.

If x =y, the algorithm is always correct.

Algorithms for Big Data (VIIT)



RANDOMNESS IN COMMUNICATION

We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2™ — 1}.

> Alice picks a random prime p € [n?,2n?].
» She sends (p,x mod p) to Bob.

» Bob outputs 1ify mod p =x mod p, and outputs O otherwise.

If x =y, the algorithm is always correct.

If x # vy, the algorithm is wrong only if x =y mod p.

Algorithms for Big Data (VIIT)



RANDOMNESS IN COMMUNICATION

We can design a more efficient protocol for EQ by tossing coins.
We treat x and y as two integers in {0, 2™ — 1}.
> Alice picks a random prime p € [n?,2n?].

» She sends (p,x mod p) to Bob.
» Bob outputs 1ify mod p =x mod p, and outputs O otherwise.

If x =y, the algorithm is always correct.
If x # vy, the algorithm is wrong only if x =y mod p.

n2
logn

The number of primes between n? and 2n? is © ( ) (prime number theorem).

Algorithms for Big Data (VIll) 6/14



RANDOMNESS IN COMMUNICATION

We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2™ — 1}.
> Alice picks a random prime p € [n?,2n?].

» She sends (p,x mod p) to Bob.
» Bob outputs 1ify mod p =x mod p, and outputs O otherwise.

If x =y, the algorithm is always correct.

If x # vy, the algorithm is wrong only if x =y mod p.

n2
logn

The number of primes between n? and 2n? is © ( ) (prime number theorem).

At most n primes q satisfy x —y mod ¢ since x,y < 2™

Algorithms for Big Data (VIll)



D1SJOINTNESS

Algorithms for Big Data (VIIT) 74



D1SJOINTNESS

The function DISJ(x,y) tests whether two sets represented by x and y respectively share
common elements.

Algorithms for Big Data (VIIT)



DISJOINTNESS

The function DISJ(x,y) tests whether two sets represented by x and y respectively share
common elements.

1 if (x,y) >0

, where x,y € {0, 1}™.
0 otherwise. wherex,y € {0, T}

Formally, DISJ(x,y) = {

Algorithms for Big Data (VIIT)



DISJOINTNESS

The function DISJ(x,y) tests whether two sets represented by x and y respectively share
common elements.

1 if (x,y) >0

Formally, DISJ(x,y) = { , where x,y € {0, 1}"".

0 otherwise.

Same argument as EQ shows that computing DIS]J deterministically requires n bits of
one-way communication.

Algorithms for Big Data (VIIT)



DISJOINTNESS

The function DISJ(x,y) tests whether two sets represented by x and y respectively share
common elements.

1 if (x,y) >0

0 otherwise.

Formally, DISJ(x,y) = { , where x,y € {0, 1}"".

Same argument as EQ shows that computing DIS]J deterministically requires n bits of
one-way communication.

How about randomized protocols?

Algorithms for Big Data (VIll)



DISJOINTNESS
The function DISJ(x,y) tests whether two sets represented by x and y respectively share
common elements.

1 if (x,y) >0

0 otherwise.

Formally, DISJ(x,y) = { , where x,y € {0, 1}"".

Same argument as EQ shows that computing DIS]J deterministically requires n bits of
one-way communication.

How about randomized protocols?

Unlike EQ, the power of randomness does not help much here...

Algorithms for Big Data (VIll) 74



LOWER BOUND FOR DIS]J

Algorithms for Big Data (VIIT) 8/14



LOWER BOUND FOR DIS]J

Theorem

Randomized protocol for DIS] with correct probability at least 2/3 needs Q(n) bits of
one-way communication.

Algorithms for Big Data (VIIT)



LOWER BOUND FOR DIS]J

Theorem

Randomized protocol for DIS] with correct probability at least 2/3 needs Q(n) bits of
one-way communication.

We prove this for a special case of DISJ, the problem of INDEX.

Algorithms for Big Data (VIIT)



LOWER BOUND FOR DIS]J

Theorem

Randomized protocol for DIS] with correct probability at least 2/3 needs Q(n) bits of
one-way communication.

We prove this for a special case of DISJ, the problem of INDEX. So the lower bound is
stronger.

Algorithms for Big Data (VIIT)



LOWER BOUND FOR DIS]J

Theorem

Randomized protocol for DIS] with correct probability at least 2/3 needs Q(n) bits of
one-way communication.

We prove this for a special case of DISJ, the problem of INDEX. So the lower bound is
stronger.

INDEX: Alice holds a string x € {0, 1}"*, Bob holds an index i € [n]. INDEX(x,1) = x;.

Algorithms for Big Data (VIll)



YAO’S PRINCIPLE

Algorithms for Big Data (VIIT) 9/14



YAO’S PRINCIPLE

The main tool we will use to derive the lower bound is Yao’s principle.

Algorithms for Big Data (VIIT) 9/14



YAO’S PRINCIPLE

The main tool we will use to derive the lower bound is Yao’s principle.
Lemma

If there exists some distribution D over {0, 1}* x {0, 1)° such that any deterministic
one-way communication protocol P with

Pr(y D [P is wrong on (x,y)] < ¢

costs at least k bits, then any randomized one-way protocol with error at most € on any
input also costs at least k bits one-way communication.

Algorithms for Big Data (VIll)



LowER BOUND FOR INDEX

Algorithms for Big Data (VIIl) 10114



LowER BOUND FOR INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1}"" x [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than

7/8.

Algorithms for Big Data (VIll) 10/14



LowER BOUND FOR INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1} x [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than

7/8.

We let D be the uniform distribution over {0, 1}" x [n].

Algorithms for Big Data (VIll) 10/14



LowER BOUND FOR INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1} x [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than

7/8.
We let D be the uniform distribution over {0, 1}" x [n].
Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.

Namely, Alice holds a function f : {0, 1}" — {0, ]}O‘M. On input X, she sends f(x) to Bob.

Algorithms for Big Data (VIll) 10/14



LowER BOUND FOR INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1} x [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than
7/8.

We let D be the uniform distribution over {0, 1}" x [n].

Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.

Namely, Alice holds a function f : {0, 1}" — {0, ]}O‘M. On input X, she sends f(x) to Bob.

Upon receiving f(x), Bob outputs some number y(f(x));. We collect the outputs (for all
possible i € [n] as a vector y(f(x)) € {0, 1}".

Algorithms for Big Data (VIll) 10/14



LowER BOUND FOR INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1} x [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than

7/8.

We let D be the uniform distribution over {0, 1}" x [n].

Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.
Namely, Alice holds a function f : {0, 1}" — {0, ]}O‘M. On input X, she sends f(x) to Bob.

Upon receiving f(x), Bob outputs some number y(f(x));. We collect the outputs (for all
possible i € [n] as a vector y(f(x)) € {0, 1}".

The algorithm is correct if x; = y(f(x));.

Algorithms for Big Data (VIll) 10/14



Therefore, we only need to upper bound
Prq).p [xi = y(f(x))i]

where both f: {0, 1} — {0, 1}0'1n and y : {0, 1}0'1n — {0, 11" are fixed!

Algorithms for Big Data (VIll) /14



Therefore, we only need to upper bound

Prq).p [xi = y(f(x))i]
where both f: {0, 1} — {0, 1}0']n and y : {0, 1}0'1n — {0, 11" are fixed!
Since i is uniform in [n], for any two strings x,y € {0, 1}'™,

dy(x
Pricp [ #Zyil = H(n’y)

Algorithms for Big Data (VIll) /14



Let S = y(x({0, 1}™)) C {0, 1}" be a set of size at most {0, 1}*'™. Since x is uniform in
{0, 11", we only need to show: there are many x € {0, 1}" satisfying dy(x,S) > n/4.

Algorithms for Big Data (VIll) 12/14



Let S = y(x({0, 1}™)) C {0, 1}" be a set of size at most {0, 1}*'™. Since x is uniform in
{0, 11", we only need to show: there are many x € {0, 1}" satisfying dy(x,S) > n/4.

This is true since Ball (S, %) < 20In, Z]%:o (7]1) < n20:Pn,

Algorithms for Big Data (VIll) 12/14



LOWER BOUND FOR F,

Algorithms for Big Data (VIIl) 1314



LOWER BOUND FOR F,

Our motivation for introducing communication model is to prove lower bound for
streaming problems.

Algorithms for Big Data (VIll) 13/14



LOWER BOUND FOR F,

Our motivation for introducing communication model is to prove lower bound for
streaming problems.

For example, we can use the lower bound for DIS]J to derive lower bound for estimating
Foo-

Algorithms for Big Data (VIll) 13/14



LOWER BOUND FOR F,

Our motivation for introducing communication model is to prove lower bound for
streaming problems.

For example, we can use the lower bound for DIS] to derive lower bound for estimating
Foo-

Theorem

Any randomized algorithm to estimate Fo, within err ¢ = 0.2 requires QQ(n) bits of
memory.

Algorithms for Big Data (VIll) 13/14



LOWER BOUND FOR F,

Our motivation for introducing communication model is to prove lower bound for
streaming problems.

For example, we can use the lower bound for DIS] to derive lower bound for estimating
Foo-

Theorem

Any randomized algorithm to estimate Fo, within err ¢ = 0.2 requires QQ(n) bits of
memory.

Proof.
Treat x and y as streams {i € [n] | x; = 1} and {1 € [n] | yi = 1} respectively. O

Algorithms for Big Data (VIll) 13/14



A GENERAL PARADIAM

Algorithms for Big Data (VIIl) 1414



A GENERAL PARADIAM

Previous proof provides a general paradiam for proving streaming lower bound based on
communication lower bound:

Algorithms for Big Data (VIll) 14/14



A GENERAL PARADIAM

Previous proof provides a general paradiam for proving streaming lower bound based on

communication lower bound:

A streaming algorithm to compute f(x,y) using s bits of memory implies a protocol to
compute f(x,y) using at most s bits of one-way communication.

Algorithms for Big Data (VIll) 14/14



A GENERAL PARADIAM

Previous proof provides a general paradiam for proving streaming lower bound based on
communication lower bound:

A streaming algorithm to compute f(x,y) using s bits of memory implies a protocol to
compute f(x,y) using at most s bits of one-way communication.

We will see more applications next time!

Algorithms for Big Data (VIll) 14/14



