
Algorithms for Big Data (VIII)

Chihao Zhang

Shanghai Jiao Tong University

Nov. 8, 2019

Algorithms for Big Data (VIII) 1/14

Review

Last week, we learnt a few graph streaming algorithms.

Recall that we have the following simple algorithm for counting triangles.

Let f = (fT)T∈([n]
3
) be the vector where for T = {x, y, z}, fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

The algorithm simply returns F0 − 1.5F1 + 0.5F2 , where Fi = ∥f∥ii.

Algorithms for Big Data (VIII) 2/14

Review

Last week, we learnt a few graph streaming algorithms.

Recall that we have the following simple algorithm for counting triangles.

Let f = (fT)T∈([n]
3
) be the vector where for T = {x, y, z}, fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

The algorithm simply returns F0 − 1.5F1 + 0.5F2 , where Fi = ∥f∥ii.

Algorithms for Big Data (VIII) 2/14

Review

Last week, we learnt a few graph streaming algorithms.

Recall that we have the following simple algorithm for counting triangles.

Let f = (fT)T∈([n]
3
) be the vector where for T = {x, y, z}, fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

The algorithm simply returns F0 − 1.5F1 + 0.5F2 , where Fi = ∥f∥ii.

Algorithms for Big Data (VIII) 2/14

Review

Last week, we learnt a few graph streaming algorithms.

Recall that we have the following simple algorithm for counting triangles.

Let f = (fT)T∈([n]
3
) be the vector where for T = {x, y, z}, fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

The algorithm simply returns F0 − 1.5F1 + 0.5F2 , where Fi = ∥f∥ii.

Algorithms for Big Data (VIII) 2/14

Review

Last week, we learnt a few graph streaming algorithms.

Recall that we have the following simple algorithm for counting triangles.

Let f = (fT)T∈([n]
3
) be the vector where for T = {x, y, z}, fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

The algorithm simply returns F0 − 1.5F1 + 0.5F2 , where Fi = ∥f∥ii.

Algorithms for Big Data (VIII) 2/14

We can expand F0 − 1.5F1 + 0.5F2 as∑
T∈([n]

3
)

0.5f2T − 1.5fT + 1[fT ̸= 0].

The “polynomial” f(x) = 0.5x2 − 1.5x+ 1[x ̸= 0] satisfies
▶ f(0) = f(1) = f(2) = 0;
▶ f(3) = 1.

The multiplicative error of the algorithm is unbounded!

I leave the analysis of the algorithm as an exercise.

Algorithms for Big Data (VIII) 3/14

We can expand F0 − 1.5F1 + 0.5F2 as∑
T∈([n]

3
)

0.5f2T − 1.5fT + 1[fT ̸= 0].

The “polynomial” f(x) = 0.5x2 − 1.5x+ 1[x ̸= 0] satisfies
▶ f(0) = f(1) = f(2) = 0;
▶ f(3) = 1.

The multiplicative error of the algorithm is unbounded!

I leave the analysis of the algorithm as an exercise.

Algorithms for Big Data (VIII) 3/14

We can expand F0 − 1.5F1 + 0.5F2 as∑
T∈([n]

3
)

0.5f2T − 1.5fT + 1[fT ̸= 0].

The “polynomial” f(x) = 0.5x2 − 1.5x+ 1[x ̸= 0] satisfies
▶ f(0) = f(1) = f(2) = 0;
▶ f(3) = 1.

The multiplicative error of the algorithm is unbounded!

I leave the analysis of the algorithm as an exercise.

Algorithms for Big Data (VIII) 3/14

We can expand F0 − 1.5F1 + 0.5F2 as∑
T∈([n]

3
)

0.5f2T − 1.5fT + 1[fT ̸= 0].

The “polynomial” f(x) = 0.5x2 − 1.5x+ 1[x ̸= 0] satisfies
▶ f(0) = f(1) = f(2) = 0;
▶ f(3) = 1.

The multiplicative error of the algorithm is unbounded!

I leave the analysis of the algorithm as an exercise.

Algorithms for Big Data (VIII) 3/14

Communication complexity

Suppose we want to compute some function f(x, y) where x ∈ {0, 1}a and y ∈ {0, 1}b.

Alice has x and Bob has y, they collaborate to compute f.

The compleixty is measured by bits communicated between the two.

We consider one-way communication model, with possible public random coins.

Algorithms for Big Data (VIII) 4/14

Communication complexity

Suppose we want to compute some function f(x, y) where x ∈ {0, 1}a and y ∈ {0, 1}b.

Alice has x and Bob has y, they collaborate to compute f.

The compleixty is measured by bits communicated between the two.

We consider one-way communication model, with possible public random coins.

Algorithms for Big Data (VIII) 4/14

Communication complexity

Suppose we want to compute some function f(x, y) where x ∈ {0, 1}a and y ∈ {0, 1}b.

Alice has x and Bob has y, they collaborate to compute f.

The compleixty is measured by bits communicated between the two.

We consider one-way communication model, with possible public random coins.

Algorithms for Big Data (VIII) 4/14

Communication complexity

Suppose we want to compute some function f(x, y) where x ∈ {0, 1}a and y ∈ {0, 1}b.

Alice has x and Bob has y, they collaborate to compute f.

The compleixty is measured by bits communicated between the two.

We consider one-way communication model, with possible public random coins.

Algorithms for Big Data (VIII) 4/14

Communication complexity

Suppose we want to compute some function f(x, y) where x ∈ {0, 1}a and y ∈ {0, 1}b.

Alice has x and Bob has y, they collaborate to compute f.

The compleixty is measured by bits communicated between the two.

We consider one-way communication model, with possible public random coins.

Algorithms for Big Data (VIII) 4/14

Example: Eqality

Consider the function f(x, y) = EQ(x, y) =
{
1 if x = y;

0 otherwise,
where x, y ∈ {0, 1}n.

The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 + 22 + · · ·+ 2n−1 = 2n − 2 distinct messages.

By the pigeonhole principle, two different strings x and x ′ share the same message.

Bob can then use y = x to fool the algorithm, a contradiction.

Algorithms for Big Data (VIII) 5/14

Example: Eqality

Consider the function f(x, y) = EQ(x, y) =
{
1 if x = y;

0 otherwise,
where x, y ∈ {0, 1}n.

The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 + 22 + · · ·+ 2n−1 = 2n − 2 distinct messages.

By the pigeonhole principle, two different strings x and x ′ share the same message.

Bob can then use y = x to fool the algorithm, a contradiction.

Algorithms for Big Data (VIII) 5/14

Example: Eqality

Consider the function f(x, y) = EQ(x, y) =
{
1 if x = y;

0 otherwise,
where x, y ∈ {0, 1}n.

The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 + 22 + · · ·+ 2n−1 = 2n − 2 distinct messages.

By the pigeonhole principle, two different strings x and x ′ share the same message.

Bob can then use y = x to fool the algorithm, a contradiction.

Algorithms for Big Data (VIII) 5/14

Example: Eqality

Consider the function f(x, y) = EQ(x, y) =
{
1 if x = y;

0 otherwise,
where x, y ∈ {0, 1}n.

The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 + 22 + · · ·+ 2n−1 = 2n − 2 distinct messages.

By the pigeonhole principle, two different strings x and x ′ share the same message.

Bob can then use y = x to fool the algorithm, a contradiction.

Algorithms for Big Data (VIII) 5/14

Example: Eqality

Consider the function f(x, y) = EQ(x, y) =
{
1 if x = y;

0 otherwise,
where x, y ∈ {0, 1}n.

The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 + 22 + · · ·+ 2n−1 = 2n − 2 distinct messages.

By the pigeonhole principle, two different strings x and x ′ share the same message.

Bob can then use y = x to fool the algorithm, a contradiction.

Algorithms for Big Data (VIII) 5/14

Example: Eqality

Consider the function f(x, y) = EQ(x, y) =
{
1 if x = y;

0 otherwise,
where x, y ∈ {0, 1}n.

The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 + 22 + · · ·+ 2n−1 = 2n − 2 distinct messages.

By the pigeonhole principle, two different strings x and x ′ share the same message.

Bob can then use y = x to fool the algorithm, a contradiction.

Algorithms for Big Data (VIII) 5/14

Randomness in communication

We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2n − 1}.

▶ Alice picks a random prime p ∈ [n2, 2n2].
▶ She sends (p, x mod p) to Bob.
▶ Bob outputs 1 if y mod p = x mod p, and outputs 0 otherwise.

If x = y, the algorithm is always correct.

If x ̸= y, the algorithm is wrong only if x = y mod p.

The number of primes between n2 and 2n2 is Θ
(

n2

logn

)
(prime number theorem).

At most n primes q satisfy x− y mod q since x, y < 2n.

Algorithms for Big Data (VIII) 6/14

Randomness in communication
We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2n − 1}.

▶ Alice picks a random prime p ∈ [n2, 2n2].
▶ She sends (p, x mod p) to Bob.
▶ Bob outputs 1 if y mod p = x mod p, and outputs 0 otherwise.

If x = y, the algorithm is always correct.

If x ̸= y, the algorithm is wrong only if x = y mod p.

The number of primes between n2 and 2n2 is Θ
(

n2

logn

)
(prime number theorem).

At most n primes q satisfy x− y mod q since x, y < 2n.

Algorithms for Big Data (VIII) 6/14

Randomness in communication
We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2n − 1}.

▶ Alice picks a random prime p ∈ [n2, 2n2].
▶ She sends (p, x mod p) to Bob.
▶ Bob outputs 1 if y mod p = x mod p, and outputs 0 otherwise.

If x = y, the algorithm is always correct.

If x ̸= y, the algorithm is wrong only if x = y mod p.

The number of primes between n2 and 2n2 is Θ
(

n2

logn

)
(prime number theorem).

At most n primes q satisfy x− y mod q since x, y < 2n.

Algorithms for Big Data (VIII) 6/14

Randomness in communication
We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2n − 1}.

▶ Alice picks a random prime p ∈ [n2, 2n2].
▶ She sends (p, x mod p) to Bob.
▶ Bob outputs 1 if y mod p = x mod p, and outputs 0 otherwise.

If x = y, the algorithm is always correct.

If x ̸= y, the algorithm is wrong only if x = y mod p.

The number of primes between n2 and 2n2 is Θ
(

n2

logn

)
(prime number theorem).

At most n primes q satisfy x− y mod q since x, y < 2n.

Algorithms for Big Data (VIII) 6/14

Randomness in communication
We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2n − 1}.

▶ Alice picks a random prime p ∈ [n2, 2n2].
▶ She sends (p, x mod p) to Bob.
▶ Bob outputs 1 if y mod p = x mod p, and outputs 0 otherwise.

If x = y, the algorithm is always correct.

If x ̸= y, the algorithm is wrong only if x = y mod p.

The number of primes between n2 and 2n2 is Θ
(

n2

logn

)
(prime number theorem).

At most n primes q satisfy x− y mod q since x, y < 2n.

Algorithms for Big Data (VIII) 6/14

Randomness in communication
We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2n − 1}.

▶ Alice picks a random prime p ∈ [n2, 2n2].
▶ She sends (p, x mod p) to Bob.
▶ Bob outputs 1 if y mod p = x mod p, and outputs 0 otherwise.

If x = y, the algorithm is always correct.

If x ̸= y, the algorithm is wrong only if x = y mod p.

The number of primes between n2 and 2n2 is Θ
(

n2

logn

)
(prime number theorem).

At most n primes q satisfy x− y mod q since x, y < 2n.

Algorithms for Big Data (VIII) 6/14

Randomness in communication
We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2n − 1}.

▶ Alice picks a random prime p ∈ [n2, 2n2].
▶ She sends (p, x mod p) to Bob.
▶ Bob outputs 1 if y mod p = x mod p, and outputs 0 otherwise.

If x = y, the algorithm is always correct.

If x ̸= y, the algorithm is wrong only if x = y mod p.

The number of primes between n2 and 2n2 is Θ
(

n2

logn

)
(prime number theorem).

At most n primes q satisfy x− y mod q since x, y < 2n.

Algorithms for Big Data (VIII) 6/14

Randomness in communication
We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2n − 1}.

▶ Alice picks a random prime p ∈ [n2, 2n2].
▶ She sends (p, x mod p) to Bob.
▶ Bob outputs 1 if y mod p = x mod p, and outputs 0 otherwise.

If x = y, the algorithm is always correct.

If x ̸= y, the algorithm is wrong only if x = y mod p.

The number of primes between n2 and 2n2 is Θ
(

n2

logn

)
(prime number theorem).

At most n primes q satisfy x− y mod q since x, y < 2n.
Algorithms for Big Data (VIII) 6/14

Disjointness

The function DISJ(x, y) tests whether two sets represented by x and y respectively share
common elements.

Formally, DISJ(x, y) =
{
1 if ⟨x, y⟩ > 0

0 otherwise.
, where x, y ∈ {0, 1}n.

Same argument as EQ shows that computing DISJ deterministically requires n bits of
one-way communication.

How about randomized protocols?

Unlike EQ, the power of randomness does not help much here…

Algorithms for Big Data (VIII) 7/14

Disjointness

The function DISJ(x, y) tests whether two sets represented by x and y respectively share
common elements.

Formally, DISJ(x, y) =
{
1 if ⟨x, y⟩ > 0

0 otherwise.
, where x, y ∈ {0, 1}n.

Same argument as EQ shows that computing DISJ deterministically requires n bits of
one-way communication.

How about randomized protocols?

Unlike EQ, the power of randomness does not help much here…

Algorithms for Big Data (VIII) 7/14

Disjointness

The function DISJ(x, y) tests whether two sets represented by x and y respectively share
common elements.

Formally, DISJ(x, y) =
{
1 if ⟨x, y⟩ > 0

0 otherwise.
, where x, y ∈ {0, 1}n.

Same argument as EQ shows that computing DISJ deterministically requires n bits of
one-way communication.

How about randomized protocols?

Unlike EQ, the power of randomness does not help much here…

Algorithms for Big Data (VIII) 7/14

Disjointness

The function DISJ(x, y) tests whether two sets represented by x and y respectively share
common elements.

Formally, DISJ(x, y) =
{
1 if ⟨x, y⟩ > 0

0 otherwise.
, where x, y ∈ {0, 1}n.

Same argument as EQ shows that computing DISJ deterministically requires n bits of
one-way communication.

How about randomized protocols?

Unlike EQ, the power of randomness does not help much here…

Algorithms for Big Data (VIII) 7/14

Disjointness

The function DISJ(x, y) tests whether two sets represented by x and y respectively share
common elements.

Formally, DISJ(x, y) =
{
1 if ⟨x, y⟩ > 0

0 otherwise.
, where x, y ∈ {0, 1}n.

Same argument as EQ shows that computing DISJ deterministically requires n bits of
one-way communication.

How about randomized protocols?

Unlike EQ, the power of randomness does not help much here…

Algorithms for Big Data (VIII) 7/14

Disjointness

The function DISJ(x, y) tests whether two sets represented by x and y respectively share
common elements.

Formally, DISJ(x, y) =
{
1 if ⟨x, y⟩ > 0

0 otherwise.
, where x, y ∈ {0, 1}n.

Same argument as EQ shows that computing DISJ deterministically requires n bits of
one-way communication.

How about randomized protocols?

Unlike EQ, the power of randomness does not help much here…

Algorithms for Big Data (VIII) 7/14

Lower bound for DISJ

Theorem
Randomized protocol for DISJ with correct probability at least 2/3 needs Ω(n) bits of
one-way communication.

We prove this for a special case of DISJ, the problem of INDEX. So the lower bound is
stronger.

INDEX: Alice holds a string x ∈ {0, 1}n, Bob holds an index i ∈ [n]. INDEX(x, i) = xi.

Algorithms for Big Data (VIII) 8/14

Lower bound for DISJ

Theorem
Randomized protocol for DISJ with correct probability at least 2/3 needs Ω(n) bits of
one-way communication.

We prove this for a special case of DISJ, the problem of INDEX. So the lower bound is
stronger.

INDEX: Alice holds a string x ∈ {0, 1}n, Bob holds an index i ∈ [n]. INDEX(x, i) = xi.

Algorithms for Big Data (VIII) 8/14

Lower bound for DISJ

Theorem
Randomized protocol for DISJ with correct probability at least 2/3 needs Ω(n) bits of
one-way communication.

We prove this for a special case of DISJ, the problem of INDEX.

So the lower bound is
stronger.

INDEX: Alice holds a string x ∈ {0, 1}n, Bob holds an index i ∈ [n]. INDEX(x, i) = xi.

Algorithms for Big Data (VIII) 8/14

Lower bound for DISJ

Theorem
Randomized protocol for DISJ with correct probability at least 2/3 needs Ω(n) bits of
one-way communication.

We prove this for a special case of DISJ, the problem of INDEX. So the lower bound is
stronger.

INDEX: Alice holds a string x ∈ {0, 1}n, Bob holds an index i ∈ [n]. INDEX(x, i) = xi.

Algorithms for Big Data (VIII) 8/14

Lower bound for DISJ

Theorem
Randomized protocol for DISJ with correct probability at least 2/3 needs Ω(n) bits of
one-way communication.

We prove this for a special case of DISJ, the problem of INDEX. So the lower bound is
stronger.

INDEX: Alice holds a string x ∈ {0, 1}n, Bob holds an index i ∈ [n]. INDEX(x, i) = xi.

Algorithms for Big Data (VIII) 8/14

Yao’s principle

The main tool we will use to derive the lower bound is Yao’s principle.

Lemma
If there exists some distribution D over {0, 1}a × {0, 1}b such that any deterministic
one-way communication protocol P with

Pr(x,y)∼D [P is wrong on (x, y)] ≤ ε

costs at least k bits, then any randomized one-way protocol with error at most ε on any
input also costs at least k bits one-way communication.

Algorithms for Big Data (VIII) 9/14

Yao’s principle

The main tool we will use to derive the lower bound is Yao’s principle.

Lemma
If there exists some distribution D over {0, 1}a × {0, 1}b such that any deterministic
one-way communication protocol P with

Pr(x,y)∼D [P is wrong on (x, y)] ≤ ε

costs at least k bits, then any randomized one-way protocol with error at most ε on any
input also costs at least k bits one-way communication.

Algorithms for Big Data (VIII) 9/14

Yao’s principle

The main tool we will use to derive the lower bound is Yao’s principle.

Lemma
If there exists some distribution D over {0, 1}a × {0, 1}b such that any deterministic
one-way communication protocol P with

Pr(x,y)∼D [P is wrong on (x, y)] ≤ ε

costs at least k bits, then any randomized one-way protocol with error at most ε on any
input also costs at least k bits one-way communication.

Algorithms for Big Data (VIII) 9/14

Lower bound for INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1}n × [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than
7/8.

We let D be the uniform distribution over {0, 1}n × [n].

Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.

Namely, Alice holds a function f : {0, 1}n → {0, 1}0.1n. On input x, she sends f(x) to Bob.

Upon receiving f(x), Bob outputs some number y(f(x))i. We collect the outputs (for all
possible i ∈ [n] as a vector y(f(x)) ∈ {0, 1}n.

The algorithm is correct if xi = y(f(x))i.

Algorithms for Big Data (VIII) 10/14

Lower bound for INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1}n × [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than
7/8.

We let D be the uniform distribution over {0, 1}n × [n].

Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.

Namely, Alice holds a function f : {0, 1}n → {0, 1}0.1n. On input x, she sends f(x) to Bob.

Upon receiving f(x), Bob outputs some number y(f(x))i. We collect the outputs (for all
possible i ∈ [n] as a vector y(f(x)) ∈ {0, 1}n.

The algorithm is correct if xi = y(f(x))i.

Algorithms for Big Data (VIII) 10/14

Lower bound for INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1}n × [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than
7/8.

We let D be the uniform distribution over {0, 1}n × [n].

Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.

Namely, Alice holds a function f : {0, 1}n → {0, 1}0.1n. On input x, she sends f(x) to Bob.

Upon receiving f(x), Bob outputs some number y(f(x))i. We collect the outputs (for all
possible i ∈ [n] as a vector y(f(x)) ∈ {0, 1}n.

The algorithm is correct if xi = y(f(x))i.

Algorithms for Big Data (VIII) 10/14

Lower bound for INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1}n × [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than
7/8.

We let D be the uniform distribution over {0, 1}n × [n].

Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.

Namely, Alice holds a function f : {0, 1}n → {0, 1}0.1n. On input x, she sends f(x) to Bob.

Upon receiving f(x), Bob outputs some number y(f(x))i. We collect the outputs (for all
possible i ∈ [n] as a vector y(f(x)) ∈ {0, 1}n.

The algorithm is correct if xi = y(f(x))i.

Algorithms for Big Data (VIII) 10/14

Lower bound for INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1}n × [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than
7/8.

We let D be the uniform distribution over {0, 1}n × [n].

Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.

Namely, Alice holds a function f : {0, 1}n → {0, 1}0.1n. On input x, she sends f(x) to Bob.

Upon receiving f(x), Bob outputs some number y(f(x))i. We collect the outputs (for all
possible i ∈ [n] as a vector y(f(x)) ∈ {0, 1}n.

The algorithm is correct if xi = y(f(x))i.

Algorithms for Big Data (VIII) 10/14

Lower bound for INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1}n × [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than
7/8.

We let D be the uniform distribution over {0, 1}n × [n].

Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.

Namely, Alice holds a function f : {0, 1}n → {0, 1}0.1n. On input x, she sends f(x) to Bob.

Upon receiving f(x), Bob outputs some number y(f(x))i. We collect the outputs (for all
possible i ∈ [n] as a vector y(f(x)) ∈ {0, 1}n.

The algorithm is correct if xi = y(f(x))i.

Algorithms for Big Data (VIII) 10/14

Therefore, we only need to upper bound

Pr(x,i)∼D [xi = y(f(x))i]

where both f : {0, 1}n → {0, 1}0.1n and y : {0, 1}0.1n → {0, 1}n are fixed!

Since i is uniform in [n], for any two strings x, y ∈ {0, 1}m,

Pri∈[n] [xi ̸= yi] =
dH(x, y)

n
.

Algorithms for Big Data (VIII) 11/14

Therefore, we only need to upper bound

Pr(x,i)∼D [xi = y(f(x))i]

where both f : {0, 1}n → {0, 1}0.1n and y : {0, 1}0.1n → {0, 1}n are fixed!

Since i is uniform in [n], for any two strings x, y ∈ {0, 1}m,

Pri∈[n] [xi ̸= yi] =
dH(x, y)

n
.

Algorithms for Big Data (VIII) 11/14

Let S = y(x({0, 1}n)) ⊆ {0, 1}n be a set of size at most {0, 1}0.1n. Since x is uniform in
{0, 1}n, we only need to show: there are many x ∈ {0, 1}n satisfying dH(x, S) ≥ n/4.

This is true since Ball
(
S, n

4

)
≤ 20.1n ·

∑n
4

j=0

(
n
j

)
≤ n20.95n.

Algorithms for Big Data (VIII) 12/14

Let S = y(x({0, 1}n)) ⊆ {0, 1}n be a set of size at most {0, 1}0.1n. Since x is uniform in
{0, 1}n, we only need to show: there are many x ∈ {0, 1}n satisfying dH(x, S) ≥ n/4.

This is true since Ball
(
S, n

4

)
≤ 20.1n ·

∑n
4

j=0

(
n
j

)
≤ n20.95n.

Algorithms for Big Data (VIII) 12/14

Lower bound for F∞

Our motivation for introducing communication model is to prove lower bound for
streaming problems.

For example, we can use the lower bound for DISJ to derive lower bound for estimating
F∞.

Theorem
Any randomized algorithm to estimate F∞ within err ε = 0.2 requires Ω(n) bits of
memory.

Proof.
Treat x and y as streams {i ∈ [n] | xi = 1} and {i ∈ [n] | yi = 1} respectively.

Algorithms for Big Data (VIII) 13/14

Lower bound for F∞
Our motivation for introducing communication model is to prove lower bound for
streaming problems.

For example, we can use the lower bound for DISJ to derive lower bound for estimating
F∞.

Theorem
Any randomized algorithm to estimate F∞ within err ε = 0.2 requires Ω(n) bits of
memory.

Proof.
Treat x and y as streams {i ∈ [n] | xi = 1} and {i ∈ [n] | yi = 1} respectively.

Algorithms for Big Data (VIII) 13/14

Lower bound for F∞
Our motivation for introducing communication model is to prove lower bound for
streaming problems.

For example, we can use the lower bound for DISJ to derive lower bound for estimating
F∞.

Theorem
Any randomized algorithm to estimate F∞ within err ε = 0.2 requires Ω(n) bits of
memory.

Proof.
Treat x and y as streams {i ∈ [n] | xi = 1} and {i ∈ [n] | yi = 1} respectively.

Algorithms for Big Data (VIII) 13/14

Lower bound for F∞
Our motivation for introducing communication model is to prove lower bound for
streaming problems.

For example, we can use the lower bound for DISJ to derive lower bound for estimating
F∞.

Theorem
Any randomized algorithm to estimate F∞ within err ε = 0.2 requires Ω(n) bits of
memory.

Proof.
Treat x and y as streams {i ∈ [n] | xi = 1} and {i ∈ [n] | yi = 1} respectively.

Algorithms for Big Data (VIII) 13/14

Lower bound for F∞
Our motivation for introducing communication model is to prove lower bound for
streaming problems.

For example, we can use the lower bound for DISJ to derive lower bound for estimating
F∞.

Theorem
Any randomized algorithm to estimate F∞ within err ε = 0.2 requires Ω(n) bits of
memory.

Proof.
Treat x and y as streams {i ∈ [n] | xi = 1} and {i ∈ [n] | yi = 1} respectively.

Algorithms for Big Data (VIII) 13/14

A general paradiam

Previous proof provides a general paradiam for proving streaming lower bound based on
communication lower bound:

A streaming algorithm to compute f(x, y) using s bits of memory implies a protocol to
compute f(x, y) using at most s bits of one-way communication.

We will see more applications next time!

Algorithms for Big Data (VIII) 14/14

A general paradiam

Previous proof provides a general paradiam for proving streaming lower bound based on
communication lower bound:

A streaming algorithm to compute f(x, y) using s bits of memory implies a protocol to
compute f(x, y) using at most s bits of one-way communication.

We will see more applications next time!

Algorithms for Big Data (VIII) 14/14

A general paradiam

Previous proof provides a general paradiam for proving streaming lower bound based on
communication lower bound:

A streaming algorithm to compute f(x, y) using s bits of memory implies a protocol to
compute f(x, y) using at most s bits of one-way communication.

We will see more applications next time!

Algorithms for Big Data (VIII) 14/14

A general paradiam

Previous proof provides a general paradiam for proving streaming lower bound based on
communication lower bound:

A streaming algorithm to compute f(x, y) using s bits of memory implies a protocol to
compute f(x, y) using at most s bits of one-way communication.

We will see more applications next time!

Algorithms for Big Data (VIII) 14/14

