Algorithms for Big Data (VIII)

Chihao Zhang
Shanghai Jiao Tong University

Nov. 8, 2019

Algorithms for Big Data (VIIT)

114

REVIEW

Last week, we learnt a few graph streaming algorithms.
Recall that we have the following simple algorithm for counting triangles.

Let f = (fT)Te([n]) be the vector where for T = {x,y, z}, fr = [{{x,y}, {x, z},{y, z}} N E|.
3

The algorithm simply returns Fo — 1.5F; + 0.5F, , where F; = ||f||}.

Algorithms for Big Data (VIIT) 214

We can expand Fyp — 1.5F; 4+ 0.5F, as

> 0.5fF — 1.5¢fr + 1[fr #£0].

Te('7)

The “polynomial” f(x) = 0.5x? — 1.5x + 1[x # 0] satisfies

> f(0)=1(1)=1(2)=0
> f(3)=1.

The multiplicative error of the algorithm is unbounded!

| leave the analysis of the algorithm as an exercise.

Algorithms for Big Data (VIIT)

COMMUNICATION COMPLEXITY

Suppose we want to compute some function f(x,y) where x € {0,1}* and y € {0, 1}°.
Alice has x and Bob has y, they collaborate to compute f.
The compleixty is measured by bits communicated between the two.

We consider one-way communication model, with possible public random coins.

Algorithms for Big Data (VIIT) 414

ExAMPLE: EQUALITY

1 ifx=vy;

Consider the function f(x,y) = EQ(x,y) = { where x,y € {0, 1}™.

0 otherwise,
The one-way complexity of EQ is n.

This can be shown by a simple counting argument:

If the number of bits sent by Alice is less than n, then she can send at most
21 422 ... 4 2™ = 2™ — 2 distinct messages.

By the pigeonhole principle, two different strings x and x’ share the same message.

Bob can then use y = x to fool the algorithm, a contradiction.

Algorithms for Big Data (VIll) 514

RANDOMNESS IN COMMUNICATION

We can design a more efficient protocol for EQ by tossing coins.

We treat x and y as two integers in {0, 2™ — 1}.
> Alice picks a random prime p € [n?,2n?].

» She sends (p,x mod p) to Bob.
» Bob outputs 1ify mod p =x mod p, and outputs O otherwise.

If x =y, the algorithm is always correct.

If x # vy, the algorithm is wrong only if x =y mod p.

n2
logn

The number of primes between n? and 2n? is © () (prime number theorem).

At most n primes q satisfy x —y mod ¢ since x,y < 2™

Algorithms for Big Data (VIll)

DISJOINTNESS
The function DISJ(x,y) tests whether two sets represented by x and y respectively share
common elements.

1 if (x,y) >0

0 otherwise.

Formally, DISJ(x,y) = { , where x,y € {0, 1}"".

Same argument as EQ shows that computing DIS]J deterministically requires n bits of
one-way communication.

How about randomized protocols?

Unlike EQ, the power of randomness does not help much here...

Algorithms for Big Data (VIll) 74

LOWER BOUND FOR DIS]J

Theorem

Randomized protocol for DIS] with correct probability at least 2/3 needs Q(n) bits of
one-way communication.

We prove this for a special case of DISJ, the problem of INDEX. So the lower bound is
stronger.

INDEX: Alice holds a string x € {0, 1}"*, Bob holds an index i € [n]. INDEX(x,1) = x;.

Algorithms for Big Data (VIll)

YAO’S PRINCIPLE

The main tool we will use to derive the lower bound is Yao’s principle.
Lemma

If there exists some distribution D over {0, 1}* x {0, 1)° such that any deterministic
one-way communication protocol P with

Pr(y D [P is wrong on (x,y)] < ¢

costs at least k bits, then any randomized one-way protocol with error at most € on any
input also costs at least k bits one-way communication.

Algorithms for Big Data (VIll)

LowER BOUND FOR INDEX

By Yao’s principle, we only need to construct a distribution D over {0, 1} x [n] so that
for any protocol with costs o(n), it outputs the correct answer with probability less than

7/8.

We let D be the uniform distribution over {0, 1}" x [n].

Assume there exists a protocol P that uses at most 0.1n bits of one-way communication.
Namely, Alice holds a function f : {0, 1}" — {0,]}O‘M. On input X, she sends f(x) to Bob.

Upon receiving f(x), Bob outputs some number y(f(x));. We collect the outputs (for all
possible i € [n] as a vector y(f(x)) € {0, 1}".

The algorithm is correct if x; = y(f(x));.

Algorithms for Big Data (VIll) 10/14

Therefore, we only need to upper bound

Prq).p [xi = y(f(x))i]
where both f: {0, 1} — {0, 1}0']n and y : {0, 1}0'1n — {0, 11" are fixed!
Since i is uniform in [n], for any two strings x,y € {0, 1}'™,

dy(x
Pricp [#Zyil = H(n’y)

Algorithms for Big Data (VIll) /14

Let S = y(x({0, 1}™)) C {0, 1}" be a set of size at most {0, 1}*'™. Since x is uniform in
{0, 11", we only need to show: there are many x € {0, 1}" satisfying dy(x,S) > n/4.

This is true since Ball (S, %) < 20In, Z]%:o (7]1) < n20:Pn,

Algorithms for Big Data (VIll) 12/14

LOWER BOUND FOR F,

Our motivation for introducing communication model is to prove lower bound for
streaming problems.

For example, we can use the lower bound for DIS] to derive lower bound for estimating
Foo-

Theorem

Any randomized algorithm to estimate Fo, within err ¢ = 0.2 requires QQ(n) bits of
memory.

Proof.
Treat x and y as streams {i € [n] | x; = 1} and {1 € [n] | yi = 1} respectively. O

Algorithms for Big Data (VIll) 13/14

A GENERAL PARADIAM

Previous proof provides a general paradiam for proving streaming lower bound based on
communication lower bound:

A streaming algorithm to compute f(x,y) using s bits of memory implies a protocol to
compute f(x,y) using at most s bits of one-way communication.

We will see more applications next time!

Algorithms for Big Data (VIll) 14/14

