
Algorithms for Big Data (VII)

Chihao Zhang

Shanghai Jiao Tong University

Nov. 1, 2019

Algorithms for Big Data (VII) 1/17

Review

We introduced the graph stream last week.

The graph has n vertices, but the edges are given in a streaming fashion.

Compute graph properties in o(n2) time.

This can be done for connectivity and bipartiteness.

Algorithms for Big Data (VII) 2/17

Review

We introduced the graph stream last week.

The graph has n vertices, but the edges are given in a streaming fashion.

Compute graph properties in o(n2) time.

This can be done for connectivity and bipartiteness.

Algorithms for Big Data (VII) 2/17

Review

We introduced the graph stream last week.

The graph has n vertices, but the edges are given in a streaming fashion.

Compute graph properties in o(n2) time.

This can be done for connectivity and bipartiteness.

Algorithms for Big Data (VII) 2/17

Review

We introduced the graph stream last week.

The graph has n vertices, but the edges are given in a streaming fashion.

Compute graph properties in o(n2) time.

This can be done for connectivity and bipartiteness.

Algorithms for Big Data (VII) 2/17

Review

We introduced the graph stream last week.

The graph has n vertices, but the edges are given in a streaming fashion.

Compute graph properties in o(n2) time.

This can be done for connectivity and bipartiteness.

Algorithms for Big Data (VII) 2/17

Shortest Path

Given an undirected simple graph G = (V, E).

We want to answer the query “what is the minimum distance between u and v for
u, v ∈ V”.

Our algorithm computes a subgraph H = (V, EH) of G such that

∀u, v ∈ V, dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v)

for some constant α ≥ 1.

Algorithms for Big Data (VII) 3/17

Shortest Path

Given an undirected simple graph G = (V, E).

We want to answer the query “what is the minimum distance between u and v for
u, v ∈ V”.

Our algorithm computes a subgraph H = (V, EH) of G such that

∀u, v ∈ V, dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v)

for some constant α ≥ 1.

Algorithms for Big Data (VII) 3/17

Shortest Path

Given an undirected simple graph G = (V, E).

We want to answer the query “what is the minimum distance between u and v for
u, v ∈ V”.

Our algorithm computes a subgraph H = (V, EH) of G such that

∀u, v ∈ V, dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v)

for some constant α ≥ 1.

Algorithms for Big Data (VII) 3/17

Algorithm Shortest Path
Init:
EH ← ∅;

On Input (u, v):
if dH(u, v) ≥ α+ 1 then

H← H ∪ {(u, v)}
end if
Output: On query (u, v)
Output dH(u, v).

Algorithms for Big Data (VII) 4/17

Clearly, dH(u, v) ≥ dH(u, v) as H contains less edges.

Consider the shortest path from u to v in G:

u = x1, x2, . . . , xk = v.

Then dG(u, v) =
∑k−1

i=1 d(xi, xi+1).

If (xi, xi+1) ∈ EH, then dH(xi, xi+1) = dG(xi, xi+1).

If (xi, xi+1) ̸∈ EH, then when we are trying to insert (xi, xi+1) into EH, it must hold that

dH(xi, xi+1) ≤ α.

In all, we have
dH(u, v) ≤ α · dG(u, v).

Algorithms for Big Data (VII) 5/17

Clearly, dH(u, v) ≥ dH(u, v) as H contains less edges.

Consider the shortest path from u to v in G:

u = x1, x2, . . . , xk = v.

Then dG(u, v) =
∑k−1

i=1 d(xi, xi+1).

If (xi, xi+1) ∈ EH, then dH(xi, xi+1) = dG(xi, xi+1).

If (xi, xi+1) ̸∈ EH, then when we are trying to insert (xi, xi+1) into EH, it must hold that

dH(xi, xi+1) ≤ α.

In all, we have
dH(u, v) ≤ α · dG(u, v).

Algorithms for Big Data (VII) 5/17

Clearly, dH(u, v) ≥ dH(u, v) as H contains less edges.

Consider the shortest path from u to v in G:

u = x1, x2, . . . , xk = v.

Then dG(u, v) =
∑k−1

i=1 d(xi, xi+1).

If (xi, xi+1) ∈ EH, then dH(xi, xi+1) = dG(xi, xi+1).

If (xi, xi+1) ̸∈ EH, then when we are trying to insert (xi, xi+1) into EH, it must hold that

dH(xi, xi+1) ≤ α.

In all, we have
dH(u, v) ≤ α · dG(u, v).

Algorithms for Big Data (VII) 5/17

Clearly, dH(u, v) ≥ dH(u, v) as H contains less edges.

Consider the shortest path from u to v in G:

u = x1, x2, . . . , xk = v.

Then dG(u, v) =
∑k−1

i=1 d(xi, xi+1).

If (xi, xi+1) ∈ EH, then dH(xi, xi+1) = dG(xi, xi+1).

If (xi, xi+1) ̸∈ EH, then when we are trying to insert (xi, xi+1) into EH, it must hold that

dH(xi, xi+1) ≤ α.

In all, we have
dH(u, v) ≤ α · dG(u, v).

Algorithms for Big Data (VII) 5/17

Clearly, dH(u, v) ≥ dH(u, v) as H contains less edges.

Consider the shortest path from u to v in G:

u = x1, x2, . . . , xk = v.

Then dG(u, v) =
∑k−1

i=1 d(xi, xi+1).

If (xi, xi+1) ∈ EH, then dH(xi, xi+1) = dG(xi, xi+1).

If (xi, xi+1) ̸∈ EH, then when we are trying to insert (xi, xi+1) into EH, it must hold that

dH(xi, xi+1) ≤ α.

In all, we have
dH(u, v) ≤ α · dG(u, v).

Algorithms for Big Data (VII) 5/17

Clearly, dH(u, v) ≥ dH(u, v) as H contains less edges.

Consider the shortest path from u to v in G:

u = x1, x2, . . . , xk = v.

Then dG(u, v) =
∑k−1

i=1 d(xi, xi+1).

If (xi, xi+1) ∈ EH, then dH(xi, xi+1) = dG(xi, xi+1).

If (xi, xi+1) ̸∈ EH, then when we are trying to insert (xi, xi+1) into EH, it must hold that

dH(xi, xi+1) ≤ α.

In all, we have
dH(u, v) ≤ α · dG(u, v).

Algorithms for Big Data (VII) 5/17

Space Consumption

We need a bit of graph theory to analyze the space consumption.

The girth g(G) of a graph G is the length of its shortest cycle.

It is clear that g(H) ≥ α+ 2.

Theorem
Let G = (V, E) be a sufficiently large graph with g(G) ≥ k. Let n = |V | and m = |E|.
Then

m ≤ n+ n
1+ 1

⌊k−1
2

⌋ .

Algorithms for Big Data (VII) 6/17

Space Consumption

We need a bit of graph theory to analyze the space consumption.

The girth g(G) of a graph G is the length of its shortest cycle.

It is clear that g(H) ≥ α+ 2.

Theorem
Let G = (V, E) be a sufficiently large graph with g(G) ≥ k. Let n = |V | and m = |E|.
Then

m ≤ n+ n
1+ 1

⌊k−1
2

⌋ .

Algorithms for Big Data (VII) 6/17

Space Consumption

We need a bit of graph theory to analyze the space consumption.

The girth g(G) of a graph G is the length of its shortest cycle.

It is clear that g(H) ≥ α+ 2.

Theorem
Let G = (V, E) be a sufficiently large graph with g(G) ≥ k. Let n = |V | and m = |E|.
Then

m ≤ n+ n
1+ 1

⌊k−1
2

⌋ .

Algorithms for Big Data (VII) 6/17

Space Consumption

We need a bit of graph theory to analyze the space consumption.

The girth g(G) of a graph G is the length of its shortest cycle.

It is clear that g(H) ≥ α+ 2.

Theorem
Let G = (V, E) be a sufficiently large graph with g(G) ≥ k. Let n = |V | and m = |E|.
Then

m ≤ n+ n
1+ 1

⌊k−1
2

⌋ .

Algorithms for Big Data (VII) 6/17

Space Consumption

We need a bit of graph theory to analyze the space consumption.

The girth g(G) of a graph G is the length of its shortest cycle.

It is clear that g(H) ≥ α+ 2.

Theorem
Let G = (V, E) be a sufficiently large graph with g(G) ≥ k. Let n = |V | and m = |E|.
Then

m ≤ n+ n
1+ 1

⌊k−1
2

⌋ .

Algorithms for Big Data (VII) 6/17

The k-core of a graph G is a subgraph whose degree is at least k.

Let d = 2m/n be the average degree of G, then G contains a d/2-core. (Why?)

The d/2-core has girth at least k, so we can find a BFS tree in it with depth ⌊k−1
2
⌋ and

width d
2
− 1.

The number of the vertices satisfies

n ≥
(
d

2
− 1

)⌊k−1
2

⌋
=

(m
n

− 1
)⌊k−1

2
⌋
.

This bound is in fact tight, can you prove it?

Algorithms for Big Data (VII) 7/17

The k-core of a graph G is a subgraph whose degree is at least k.

Let d = 2m/n be the average degree of G, then G contains a d/2-core. (Why?)

The d/2-core has girth at least k, so we can find a BFS tree in it with depth ⌊k−1
2
⌋ and

width d
2
− 1.

The number of the vertices satisfies

n ≥
(
d

2
− 1

)⌊k−1
2

⌋
=

(m
n

− 1
)⌊k−1

2
⌋
.

This bound is in fact tight, can you prove it?

Algorithms for Big Data (VII) 7/17

The k-core of a graph G is a subgraph whose degree is at least k.

Let d = 2m/n be the average degree of G, then G contains a d/2-core. (Why?)

The d/2-core has girth at least k, so we can find a BFS tree in it with depth ⌊k−1
2
⌋ and

width d
2
− 1.

The number of the vertices satisfies

n ≥
(
d

2
− 1

)⌊k−1
2

⌋
=

(m
n

− 1
)⌊k−1

2
⌋
.

This bound is in fact tight, can you prove it?

Algorithms for Big Data (VII) 7/17

The k-core of a graph G is a subgraph whose degree is at least k.

Let d = 2m/n be the average degree of G, then G contains a d/2-core. (Why?)

The d/2-core has girth at least k, so we can find a BFS tree in it with depth ⌊k−1
2
⌋ and

width d
2
− 1.

The number of the vertices satisfies

n ≥
(
d

2
− 1

)⌊k−1
2

⌋
=

(m
n

− 1
)⌊k−1

2
⌋
.

This bound is in fact tight, can you prove it?

Algorithms for Big Data (VII) 7/17

The k-core of a graph G is a subgraph whose degree is at least k.

Let d = 2m/n be the average degree of G, then G contains a d/2-core. (Why?)

The d/2-core has girth at least k, so we can find a BFS tree in it with depth ⌊k−1
2
⌋ and

width d
2
− 1.

The number of the vertices satisfies

n ≥
(
d

2
− 1

)⌊k−1
2

⌋
=

(m
n

− 1
)⌊k−1

2
⌋
.

This bound is in fact tight, can you prove it?

Algorithms for Big Data (VII) 7/17

Matchings

Let G = (V, E) be a graph, a matching M ⊆ E consisting of edges sharing no vertex.

The problem of finding maximum matching is a famous polynmial-time solvable
problem.

Now we try to approximate it in the streaming setting.

Algorithms for Big Data (VII) 8/17

Matchings

Let G = (V, E) be a graph, a matching M ⊆ E consisting of edges sharing no vertex.

The problem of finding maximum matching is a famous polynmial-time solvable
problem.

Now we try to approximate it in the streaming setting.

Algorithms for Big Data (VII) 8/17

Matchings

Let G = (V, E) be a graph, a matching M ⊆ E consisting of edges sharing no vertex.

The problem of finding maximum matching is a famous polynmial-time solvable
problem.

Now we try to approximate it in the streaming setting.

Algorithms for Big Data (VII) 8/17

Matchings

Let G = (V, E) be a graph, a matching M ⊆ E consisting of edges sharing no vertex.

The problem of finding maximum matching is a famous polynmial-time solvable
problem.

Now we try to approximate it in the streaming setting.

Algorithms for Big Data (VII) 8/17

Algorithm Maximum Matching
Init:
M← ∅;

On Input (u, v):
if M ∪ {(u, v)} is a matching then

M←M ∪ {(u, v)}
end if
Output:
Output |M|.

Algorithms for Big Data (VII) 9/17

Let M̂ denote our estimate and M∗ denote the maximum matching.

Theorem
|M∗|

2
≤

∣∣∣M̂∣∣∣ ≤ |M∗| .

M∗ is a maximal matching. Each e ∈ M intersects at most two edges in M∗.

Algorithms for Big Data (VII) 10/17

Let M̂ denote our estimate and M∗ denote the maximum matching.

Theorem
|M∗|

2
≤

∣∣∣M̂∣∣∣ ≤ |M∗| .

M∗ is a maximal matching. Each e ∈ M intersects at most two edges in M∗.

Algorithms for Big Data (VII) 10/17

Let M̂ denote our estimate and M∗ denote the maximum matching.

Theorem
|M∗|

2
≤

∣∣∣M̂∣∣∣ ≤ |M∗| .

M∗ is a maximal matching. Each e ∈ M intersects at most two edges in M∗.

Algorithms for Big Data (VII) 10/17

Maximum Weighted Matching

Each edge e ∈ E is associated with a non-negative weight w(e) ≥ 0.

Compute a matching M to maximize
∑

e∈Mw(e).

Algorithm Maximum Weighted Matching
Init: M← ∅;

On Input (u, v):
if M ∪ {(u, v)} is a matching thenM←M ∪ {(u, v)}
else

C← {e ∈ M : u ∈ e∨ v ∈ e};
if w(u, v) > 2w(C) thenM← (M \ C) ∪ {(u, v)};
end if

end if
Output: Output |M|.

Algorithms for Big Data (VII) 11/17

Maximum Weighted Matching
Each edge e ∈ E is associated with a non-negative weight w(e) ≥ 0.

Compute a matching M to maximize
∑

e∈Mw(e).

Algorithm Maximum Weighted Matching
Init: M← ∅;

On Input (u, v):
if M ∪ {(u, v)} is a matching thenM←M ∪ {(u, v)}
else

C← {e ∈ M : u ∈ e∨ v ∈ e};
if w(u, v) > 2w(C) thenM← (M \ C) ∪ {(u, v)};
end if

end if
Output: Output |M|.

Algorithms for Big Data (VII) 11/17

Maximum Weighted Matching
Each edge e ∈ E is associated with a non-negative weight w(e) ≥ 0.

Compute a matching M to maximize
∑

e∈Mw(e).

Algorithm Maximum Weighted Matching
Init: M← ∅;

On Input (u, v):
if M ∪ {(u, v)} is a matching thenM←M ∪ {(u, v)}
else

C← {e ∈ M : u ∈ e∨ v ∈ e};
if w(u, v) > 2w(C) thenM← (M \ C) ∪ {(u, v)};
end if

end if
Output: Output |M|.

Algorithms for Big Data (VII) 11/17

Analysis

We use a charging argument to analyze the algorithm.

We call an edge e:
▶ born if we added it to M;
▶ die if it was removed from M;
▶ murdered by e ′ if it dies because we add e ′.

For every e ∈ M, we define the family of victims:

C0(e) = {e} , C1(e) = edges murdered by e, . . . , Ci(e) =
∪

f∈Ci−1(e)

edges murdered by f, . . .

Algorithms for Big Data (VII) 12/17

Analysis

We use a charging argument to analyze the algorithm.

We call an edge e:
▶ born if we added it to M;
▶ die if it was removed from M;
▶ murdered by e ′ if it dies because we add e ′.

For every e ∈ M, we define the family of victims:

C0(e) = {e} , C1(e) = edges murdered by e, . . . , Ci(e) =
∪

f∈Ci−1(e)

edges murdered by f, . . .

Algorithms for Big Data (VII) 12/17

Analysis

We use a charging argument to analyze the algorithm.

We call an edge e:
▶ born if we added it to M;
▶ die if it was removed from M;
▶ murdered by e ′ if it dies because we add e ′.

For every e ∈ M, we define the family of victims:

C0(e) = {e} , C1(e) = edges murdered by e, . . . , Ci(e) =
∪

f∈Ci−1(e)

edges murdered by f, . . .

Algorithms for Big Data (VII) 12/17

Analysis

We use a charging argument to analyze the algorithm.

We call an edge e:
▶ born if we added it to M;
▶ die if it was removed from M;
▶ murdered by e ′ if it dies because we add e ′.

For every e ∈ M, we define the family of victims:

C0(e) = {e} , C1(e) = edges murdered by e, . . . , Ci(e) =
∪

f∈Ci−1(e)

edges murdered by f, . . .

Algorithms for Big Data (VII) 12/17

Lemma
For every e,

w

∪
i≥1

Ci(e)

 ≥ w(e).

Proof.
By the definition of murdering, w(Ci+1) ≤ w(Ci)/2. Therefore

2
∑
i≥1

w (Ci(e)) ≤
∑
i≥0

w(Ci) = w(e) +
∑
i≥1

w(Ci).

Algorithms for Big Data (VII) 13/17

Lemma
For every e,

w

∪
i≥1

Ci(e)

 ≥ w(e).

Proof.
By the definition of murdering, w(Ci+1) ≤ w(Ci)/2. Therefore

2
∑
i≥1

w (Ci(e)) ≤
∑
i≥0

w(Ci) = w(e) +
∑
i≥1

w(Ci).

Algorithms for Big Data (VII) 13/17

Lemma

w(M∗) ≤
∑
e∈M

4w(e) + 2w

∪
i≥1

Ci(e)

 .

We consider e∗1, e
∗
2, . . . of M∗ in the order of the stream.

▶ if e∗i is born, charge w(e∗i) to e∗i ;
▶ if e∗i is not born, charge w(e∗i) to its conflicting edges (w∗(e) is divided

proportional to the weight of the conflicting edges);
▶ if some e ′ = (u, v) murdered some e = (u ′, v) and e has been charged by some

e∗ = (u ′′, v), then move the charge from e to e ′.

Algorithms for Big Data (VII) 14/17

Lemma

w(M∗) ≤
∑
e∈M

4w(e) + 2w

∪
i≥1

Ci(e)

 .

We consider e∗1, e
∗
2, . . . of M∗ in the order of the stream.

▶ if e∗i is born, charge w(e∗i) to e∗i ;
▶ if e∗i is not born, charge w(e∗i) to its conflicting edges (w∗(e) is divided

proportional to the weight of the conflicting edges);
▶ if some e ′ = (u, v) murdered some e = (u ′, v) and e has been charged by some

e∗ = (u ′′, v), then move the charge from e to e ′.

Algorithms for Big Data (VII) 14/17

At last, we have
▶ for every e ∈ M, its charge is at most 4w(e);
▶ for every e ∈

∪
i≥1C(e

′) for some e ′, its charge is at most 2w(e).

Therefore,

w(M∗) ≤
∑
e∈M

4w(e) + 2w

∪
i≥1

Ci

 ≤ 6w(M).

The analysis is not pushed to the limit yet, can you improve the approximation ratio 6?
(Exercise)

Algorithms for Big Data (VII) 15/17

At last, we have
▶ for every e ∈ M, its charge is at most 4w(e);
▶ for every e ∈

∪
i≥1C(e

′) for some e ′, its charge is at most 2w(e).

Therefore,

w(M∗) ≤
∑
e∈M

4w(e) + 2w

∪
i≥1

Ci

 ≤ 6w(M).

The analysis is not pushed to the limit yet, can you improve the approximation ratio 6?
(Exercise)

Algorithms for Big Data (VII) 15/17

At last, we have
▶ for every e ∈ M, its charge is at most 4w(e);
▶ for every e ∈

∪
i≥1C(e

′) for some e ′, its charge is at most 2w(e).

Therefore,

w(M∗) ≤
∑
e∈M

4w(e) + 2w

∪
i≥1

Ci

 ≤ 6w(M).

The analysis is not pushed to the limit yet, can you improve the approximation ratio 6?
(Exercise)

Algorithms for Big Data (VII) 15/17

Counting Triangles

An important topic is to compute the number of some fixed subgraph in a graph in the
streaming setting.

We study a simple algorithm for counting triangles.

Consider an vector f = (fT)T∈([n]
3)

, where for every T = x, y, z,

fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

So if for some T = {x, y, z}, fT = 3, then x, y, z is a triangle in G.

The algorithm simply outputs F0 − 1.5F1 + 0.5F2, where Fi = ∥f∥ii.

Algorithms for Big Data (VII) 16/17

Counting Triangles

An important topic is to compute the number of some fixed subgraph in a graph in the
streaming setting.

We study a simple algorithm for counting triangles.

Consider an vector f = (fT)T∈([n]
3)

, where for every T = x, y, z,

fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

So if for some T = {x, y, z}, fT = 3, then x, y, z is a triangle in G.

The algorithm simply outputs F0 − 1.5F1 + 0.5F2, where Fi = ∥f∥ii.

Algorithms for Big Data (VII) 16/17

Counting Triangles

An important topic is to compute the number of some fixed subgraph in a graph in the
streaming setting.

We study a simple algorithm for counting triangles.

Consider an vector f = (fT)T∈([n]
3)

, where for every T = x, y, z,

fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

So if for some T = {x, y, z}, fT = 3, then x, y, z is a triangle in G.

The algorithm simply outputs F0 − 1.5F1 + 0.5F2, where Fi = ∥f∥ii.

Algorithms for Big Data (VII) 16/17

Counting Triangles

An important topic is to compute the number of some fixed subgraph in a graph in the
streaming setting.

We study a simple algorithm for counting triangles.

Consider an vector f = (fT)T∈([n]
3)

, where for every T = x, y, z,

fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

So if for some T = {x, y, z}, fT = 3, then x, y, z is a triangle in G.

The algorithm simply outputs F0 − 1.5F1 + 0.5F2, where Fi = ∥f∥ii.

Algorithms for Big Data (VII) 16/17

Counting Triangles

An important topic is to compute the number of some fixed subgraph in a graph in the
streaming setting.

We study a simple algorithm for counting triangles.

Consider an vector f = (fT)T∈([n]
3)

, where for every T = x, y, z,

fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

So if for some T = {x, y, z}, fT = 3, then x, y, z is a triangle in G.

The algorithm simply outputs F0 − 1.5F1 + 0.5F2, where Fi = ∥f∥ii.

Algorithms for Big Data (VII) 16/17

Counting Triangles

An important topic is to compute the number of some fixed subgraph in a graph in the
streaming setting.

We study a simple algorithm for counting triangles.

Consider an vector f = (fT)T∈([n]
3)

, where for every T = x, y, z,

fT = |{{x, y} , {x, z} , {y, z}} ∩ E|.

So if for some T = {x, y, z}, fT = 3, then x, y, z is a triangle in G.

The algorithm simply outputs F0 − 1.5F1 + 0.5F2, where Fi = ∥f∥ii.

Algorithms for Big Data (VII) 16/17

We can expand F0 − 1.5F1 + 0.5F2 as∑
T∈([n]

3)

0.5f2T − 1.5fT + 1[fT ̸= 0].

The “polynomial” f(x) = 0.5x2 − 1.5x+ 1[x ̸= 0] satisfies
▶ f(0) = f(1) = f(2) = 0;
▶ f(3) = 1.

The multiplicative error of the algorithm is unbounded!

Algorithms for Big Data (VII) 17/17

We can expand F0 − 1.5F1 + 0.5F2 as∑
T∈([n]

3)

0.5f2T − 1.5fT + 1[fT ̸= 0].

The “polynomial” f(x) = 0.5x2 − 1.5x+ 1[x ̸= 0] satisfies
▶ f(0) = f(1) = f(2) = 0;
▶ f(3) = 1.

The multiplicative error of the algorithm is unbounded!

Algorithms for Big Data (VII) 17/17

We can expand F0 − 1.5F1 + 0.5F2 as∑
T∈([n]

3)

0.5f2T − 1.5fT + 1[fT ̸= 0].

The “polynomial” f(x) = 0.5x2 − 1.5x+ 1[x ̸= 0] satisfies
▶ f(0) = f(1) = f(2) = 0;
▶ f(3) = 1.

The multiplicative error of the algorithm is unbounded!

Algorithms for Big Data (VII) 17/17

