Algorithms for Big Data (VII)

Chihao Zhang
Shanghai Jiao Tong University

Nov. 1, 2019

Algorithms for Big Data (VIl)

117

REVIEW

We introduced the graph stream last week.

The graph has n vertices, but the edges are given in a streaming fashion.

Compute graph properties in o(n?) time.

This can be done for connectivity and bipartiteness.

Algorithms for Big Data (VII)

SHORTEST PATH

Given an undirected simple graph G = (V, E).

We want to answer the query “what is the minimum distance between u and v for
u,vev.

Our algorithm computes a subgraph H = (V, Eyy) of G such that
Vu,VGV, dG(u»V) SdH(u>V)§“'dG(u»V)

for some constant o« > 1.

Algorithms for Big Data (VII)

Algorithm Shortest Path

Init:

Eq « o

On Input (u,v):

if dy(u,v) > o+ 1 then
H«+— HU{(u,v)}

end if

Output: On query (u,V)

Output dpy(u,v).

Algorithms for Big Data (VII)

Clearly, dyj(u,v) > dp(u,v) as H contains less edges.
Consider the shortest path fromutovin G:
U= X]yX2y vy Xk = V.
Then dg(u,v) = Z]fj d(xiy Xi41).
If (xi,Xi41) € Ep, then dp(xq, xi41) = dg(xi, Xi41)-
If (xi,Xi+1) € En, then when we are trying to insert (xi, xi11) into Ey, it must hold that

dp(xi, xi01) < .

In all, we have
dn(u,v) < a-dglu,v).

Algorithms for Big Data (VIl) 517

SpACE CONSUMPTION

We need a bit of graph theory to analyze the space consumption.
The girth g(G) of a graph G is the length of its shortest cycle.

It is clear that g(H) > o+ 2.

Theorem

Let G = (V, E) be a sufficiently large graph with g(G) > k. Let n = |V| and m = |E|.
Then

1
m<n+n L5,

Algorithms for Big Data (VII)

The k-core of a graph G is a subgraph whose degree is at least k.
Let d = 2m/n be the average degree of G, then G contains a d/2-core. (Why?)

The d/2-core has girth at least k, so we can find a BFS tree in it with depth LkT_]j and
width % -1

The number of the vertices satisfies

d : =
> (S _

This bound is in fact tight, can you prove it?

Algorithms for Big Data (VII)

MATCHINGS

Let G = (V, E) be a graph, a matching M C E consisting of edges sharing no vertex.

The problem of finding maximum matching is a famous polynmial-time solvable
problem.

Now we try to approximate it in the streaming setting.

Algorithms for Big Data (VII)

Algorithm Maximum Matching

Init:

M «— o;

On Input (u,v):

if M U{(u,V)}is a matching then
M — M U{(u,v)}

end if

Output:
Output |[M|.

Algorithms for Big Data (VII)

Let M denote our estimate and M* denote the maximum matching.
Theorem
IM¥|
2

<]ﬂ\ < M.

M* is a maximal matching. Each e € M intersects at most two edges in M*.

Algorithms for Big Data (VI1) 1017

MaxiMmuMm WEIGHTED MATCHING
Each edge e € E is associated with a non-negative weight w(e) > 0.

Compute a matching M to maximize } .., W(e).

Algorithm Maximum Weighted Matching

Init: M « &;

On Input (u,v):

if M U{(u,V)}is a matching then M «— M U {(u,v)}

else
C—{eeM:ueceVvee}
if w(u,v) > 2w(C) then M « (M \ C) U{(u,v)}
end if

end if

Output: Output [M|.

Algorithms for Big Data (VI1) nn7

ANALYSIS

We use a charging argument to analyze the algorithm.

We call an edge e:
» born if we added it to M;
» die if it was removed from M;

» murdered by e’ if it dies because we add e’.

For every e € M, we define the family of victims:

Co(e) ={e},Ci(e) = edges murdered by e, ..., Ci(e) = U edges murdered by f,. ..
feCi—1(e)

Algorithms for Big Data (VI1) 1217

Lemma
For every e,

w (U Ci(e)) > wle).

i>1

Proof.
By the definition of murdering, w(Ci1) < w(C;)/2. Therefore

23 w(Cile)) <D wi(Ci) =wle)+ D w(Cy.

i>1 i>0 i>1

Algorithms for Big Data (VI1) 1317

Lemma

wM*) < Y [4w(e) +2w | | Cile)

eeM i>1

We consider e7, e3,... of M* in the order of the stream.
» if ef is born, charge w(ef) to e;
» if e is not born, charge w(e}) to its conflicting edges (W*(e) is divided
proportional to the weight of the conflicting edges);

» if some e’ = (u,v) murdered some e = (u’,v) and e has been charged by some
e* = (u”,v), then move the charge from e to e’.

Algorithms for Big Data (VI1) 1417

At last, we have
» for every e € M, its charge is at most 4w(e);
» for every e € | J;~; C(e’) for some €/, its charge is at most 2w(e).

Therefore,

w(M*) <Z 4w(e) + 2w UC < 6w(M).
eeM i>1

The analysis is not pushed to the limit yet, can you improve the approximation ratio 6?
(Exercise)

Algorithms for Big Data (VII)

15/17

CoOUNTING TRIANGLES

An important topic is to compute the number of some fixed subgraph in a graph in the
streaming setting.

We study a simple algorithm for counting triangles.

Consider an vector f = (fT)TE([n]), where for every T = x, y, z,
3
fT = |{{X)y}){x) Z}){y) Z}} N E|

So if for some T = {x, y, z}, f = 3, then x,y, z is a triangle in G.

The algorithm simply outputs Fo — 1.5F; + 0.5F,, where F; = ||f]|%.

Algorithms for Big Data (VI1) 16/17

We can expand Fg — 1.5F; 4 0.5F, as

> 0.5fF — 1.5¢fr + 1[fr #£0].
Te('y)

The “polynomial” f(x) = 0.5x? — 1.5x + 1[x # 0] satisfies
» £(0) =f(1) =1(2) =0;

» f(3)=1.

The multiplicative error of the algorithm is unbounded!

Algorithms for Big Data (VI1) 1717

