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REVIEW

We introduced the graph stream last week.

The graph has n vertices, but the edges are given in a streaming fashion.

Compute graph properties in o(n?) time.

This can be done for connectivity and bipartiteness.
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SHORTEST PATH

Given an undirected simple graph G = (V, E).

We want to answer the query “what is the minimum distance between u and v for
u,vev.

Our algorithm computes a subgraph H = (V, Eyy) of G such that
Vu,VGV, dG(u»V) SdH(u>V)§“'dG(u»V)

for some constant o« > 1.
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Algorithm Shortest Path

Init:

Eq « o

On Input (u,v):

if dy(u,v) > o+ 1 then
H«+— HU{(u,v)}

end if

Output: On query (u,V)

Output dpy(u,v).

Algorithms for Big Data (VII)



Clearly, dyj(u,v) > dp(u,v) as H contains less edges.
Consider the shortest path fromutovin G:
U= X]yX2y vy Xk = V.
Then dg(u,v) = Z]fj d(xiy Xi41).
If (xi,Xi41) € Ep, then dp(xq, xi41) = dg(xi, Xi41)-
If (xi,Xi+1) € En, then when we are trying to insert (xi, xi11) into Ey, it must hold that

dp(xi, xi01) < .

In all, we have
dn(u,v) < a-dglu,v).
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SpACE CONSUMPTION

We need a bit of graph theory to analyze the space consumption.
The girth g(G) of a graph G is the length of its shortest cycle.

It is clear that g(H) > o+ 2.

Theorem

Let G = (V, E) be a sufficiently large graph with g(G) > k. Let n = |V| and m = |E|.
Then

1
m<n+n L5,
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The k-core of a graph G is a subgraph whose degree is at least k.
Let d = 2m/n be the average degree of G, then G contains a d/2-core. (Why?)

The d/2-core has girth at least k, so we can find a BFS tree in it with depth LkT_]j and
width % -1

The number of the vertices satisfies

d : =
> (S _

This bound is in fact tight, can you prove it?
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MATCHINGS

Let G = (V, E) be a graph, a matching M C E consisting of edges sharing no vertex.

The problem of finding maximum matching is a famous polynmial-time solvable
problem.

Now we try to approximate it in the streaming setting.
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Algorithm Maximum Matching

Init:

M «— o;

On Input (u,v):

if M U{(u,V)}is a matching then
M — M U{(u,v)}

end if

Output:
Output |[M|.
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Let M denote our estimate and M* denote the maximum matching.
Theorem
IM¥|
2

< ]ﬂ\ < M.

M* is a maximal matching. Each e € M intersects at most two edges in M*.
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MaxiMmuMm WEIGHTED MATCHING
Each edge e € E is associated with a non-negative weight w(e) > 0.

Compute a matching M to maximize } .., W(e).

Algorithm Maximum Weighted Matching

Init: M « &;

On Input (u,v):

if M U{(u,V)}is a matching then M «— M U {(u,v)}

else
C—{eeM:ueceVvee}
if w(u,v) > 2w(C) then M « (M \ C) U{(u,v)}
end if

end if

Output: Output [M|.
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ANALYSIS

We use a charging argument to analyze the algorithm.

We call an edge e:
» born if we added it to M;
» die if it was removed from M;

» murdered by e’ if it dies because we add e’.

For every e € M, we define the family of victims:

Co(e) ={e},Ci(e) = edges murdered by e, ..., Ci(e) = U edges murdered by f,. ..
feCi—1(e)
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Lemma
For every e,

w (U Ci(e)) > wle).

i>1

Proof.
By the definition of murdering, w(Ci1) < w(C;)/2. Therefore

23 w(Cile)) <D wi(Ci) =wle)+ D w(Cy.

i>1 i>0 i>1
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Lemma

wM*) < Y [ 4w(e) +2w | | Cile)

eeM i>1

We consider e7, e3,... of M* in the order of the stream.
» if ef is born, charge w(ef) to e;
» if e is not born, charge w(e}) to its conflicting edges (W*(e) is divided
proportional to the weight of the conflicting edges);

» if some e’ = (u,v) murdered some e = (u’,v) and e has been charged by some
e* = (u”,v), then move the charge from e to e’.
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At last, we have
» for every e € M, its charge is at most 4w(e);
» for every e € | J;~; C(e’) for some €/, its charge is at most 2w(e).

Therefore,

w(M*) <Z 4w(e) + 2w UC < 6w(M).
eeM i>1

The analysis is not pushed to the limit yet, can you improve the approximation ratio 6?
(Exercise)
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CoOUNTING TRIANGLES

An important topic is to compute the number of some fixed subgraph in a graph in the
streaming setting.

We study a simple algorithm for counting triangles.

Consider an vector f = (fT)TE([n]), where for every T = x, y, z,
3
fT = |{{X)y}){x) Z}){y) Z}} N E|

So if for some T = {x, y, z}, f = 3, then x,y, z is a triangle in G.

The algorithm simply outputs Fo — 1.5F; + 0.5F,, where F; = ||f]|%.
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We can expand Fg — 1.5F; 4 0.5F, as

> 0.5fF — 1.5¢fr + 1[fr #£0].
Te('y)

The “polynomial” f(x) = 0.5x? — 1.5x + 1[x # 0] satisfies
» £(0) =f(1) =1(2) =0;

» f(3)=1.

The multiplicative error of the algorithm is unbounded!
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