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Review

We learnt AMS algorithm to estimate ∥f∥kk for k ≥ 2 using O
(
kn1−1/k (logm + logn)

)
bits.

An ad-hoc algorithm for ∥f∥22 costs O (logm + logn).

▶ Pick h : [n]→ {−1, 1} from a 4-universal family;
▶ On input (j,∆), x ← x +∆ · h(j);
▶ Output x2.
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An Algebraic View

It is instructive to view the Tug-of-War algorithm from linear algebra.

Assume that we run the algorithm k times (to apply the averaging trick), each time with
function hi .

Consider the matrix A = (ai j)i ∈[k ], j ∈[n] where ai j = hi(j).

Let x = Af, we know that E
[
x2i

]
= ∥ f ∥22 . Our algorithm outputs

∑k
i=1 x

2
i

k =
∥x∥22
k .

The 2-norm of the vector x√
k

is close to that of f!
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Dimension Reduction

Suppose k ≪ n, what the matrix A does is to map a vector in Rn to a vector in Rk

without changing its norm much.

This operation is often referred as dimension reduction or metric embedding.

The algorithm we met is similar to one important dimension reduction technique -
Johnson-Lindenstrauss transformation.
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Johnson-Lindenstrauss transformation

Theorem
For any 0 < ε < 1

2 and any positive integerm, consider a set ofm points S ⊆ Rn . There
exists an matrix A ∈ Rk×n where k = O

(
ε−2 logm

)
satisfying

∀x,y ∈ S, (1 − ε)∥x − y∥ ≤ ∥Ax −Ay∥ ≤ (1 + ε)∥x − y∥.

We construct A by drawing each of its entry from N(0, 1k ) independently.
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Gaussian Distribution

Recall the density function of a variable X ∼ N(µ,σ2) is

fX (x) =
1
√
2πσ

e
− (x−µ)2

2σ2 .

The distribution function is

FX (x) =
1
√
2πσ

∫ x

−∞
e
− (t−µ)2

2σ2 d t .

Assume X1 ∼ N(µ1,σ
2
1 ) and X2 ∼ N(µ2,σ

2
2 ), then

aX1 + bX2 ∼ N(aµ1 + bµ2,a
2σ2

1 + b2σ2
2 ).
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Proof of JL

The statement is equivalent to

1 − ε ≤ ∥A(x − y)∥∥x − y∥ ≤ 1 + ε .

We only need to show that for every unit length vector f,

Pr [| ∥Af∥ − 1| > ε] ≤ 1 − δ .

Assume x = Af, then xi =
∑

j ∈[n] ai j · fj ∼ N(0, 1k ).

We need a concentration inequality for squared sum of Gaussians:

Pr

[����� k∑
i=1

x2i − 1
����� ≥ ε

]
≤ 1 − δ .
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Concentration

Theorem
Assume X1,X2, . . . ,Xk be i.i.d N(0, 1), then for 0 < ε < 1,

Pr

[����� k∑
i=1

X 2
i − k

����� ≥ εk

]
< 2e−

ε2k
8 .

The proof is similar to the proof of the Chernoff bound we met before.
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Estimate F2 from JL

We can use JL to estimate F2:

Algorithm JL Transformation
Init:
Z1, . . . ,Zn from N(0, 1).
x ← 0.

On Input (y,∆):
x ← x +∆ · Zy
Output:
Output x2.

The algorithm is neither friendly to implement nor efficient, but it is inspiring.

The core property we used to prove its correctness is that
∑n

j=1 Z j · fj has the same
distribution as ∥f∥2Z where Z ∼ N(0, 1).
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The property generalizes to p < 2.

For some distribution Dp , if Z j ∼ Dp , then
∑

j Z j · fj has the same distribution as ∥f∥pZ
where Z ∼ Dp .

The distribution is called p-stable.

We can use them to estimate Fp . Many technical issue of the algorithm is beyond the
scope of this course.
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Graph Stream

We have a graph with vertex set [n], but its edges are unknown.

The edge are given in a streaming fashion, namely each time we reveal an edge (u,v).

Can we compute graph properties using small bits of memories? Say in
O (n · poly(logn)).
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Connectedness

A basic graph property is whether the graph is connected.

We can maintain a spanning forest F of G:

Init:
F ← �,
X ← 0.

On Input (u,v):
if X = 0 and F ∪

{
(u,v)

}
has no cycle then

F ← F ∪
{
(u,v)

}
;

if |F | = n − 1 then X ← 1
end if

end if
Output:
Output X .
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Bipartiteness

The following algorithm decides whether G is bipartite.

Init:
F ← �,
X ← 1.

On Input (u,v):
if X = 1 then

if F ∪
{
(u,v)

}
has no cycle then

F ← F ∪
{
(u,v)

}
;

else if F ∪
{
(u,v)

}
has an odd cycle then X ← 0

end if
end if
Output:
Output X .
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