Algorithms for Big Data (V)

Chihao Zhang
Shanghai Jiao Tong University

Oct. 18, 2019

Review of the Last Lecture

Review of the Last Lecture

Last time, we learnt Misra-Gries and Count Sketch for Frequency Estimation.

Review of the Last Lecture

Last time, we learnt Misra-Gries and Count Sketch for Frequency Estimation.

The later has the advantage of being a linear sketch.

Review of the Last Lecture

Last time, we learnt Misra-Gries and Count Sketch for Frequency Estimation.
The later has the advantage of being a linear sketch.

It also generalize to turnstile model.

Count Sketch

Count Sketch

Algorithm Count Sketch

Init:

An array Cl[j] for j € [k] where k = %

A random Hash function h: [n] — [k] from a 2-universal family.

A random Hash function g : [n] — {—1, 1} from a 2-universal family.
On Input (y,A):

Clh(y)l + Chh(y)l +A-g(y)

Output: On query a:

Output fq = g(a) - C[h(a)].

The Performance

We can apply the median trick to obtain:
> Pr[|fa—fa| > elifl] <5

> it costs O (é Iog% (logm + log n)) bits of memeory.

The Performance

We can apply the median trick to obtain:
> Pr[|fa—fa| > elifl] <5

> it costs O (é Iog% (logm + log n)) bits of memeory.

Today we will see another simple sketch algorithm.

Count-Min

Count-Min

We assume that for each entry (y, A), it holds that A > 0.

Count-Min

We assume that for each entry (y, A), it holds that A > 0.

Algorithm Count-Min

Init:

An array Cl[i][j] for i € [t] and j € [k] where t = log(1/8) and k = 2/¢.

Choose t independent random Hash function hy, ..., h¢ :] — [k] from a 2-universal
family.

On Input (y,A):

For each i € [t], Clil[hi(y)] + Clillhi(y)] + A.
Output: On query a:

Output fq = minici<t Clillh(a)l.

Analysis

Analysis

Obviously we have fq < 1?(1.

Analysis

Obviously we have fq < 1?(1.

Our algorithm overestimates only if for some b # a, hi(b) = hi(a). Let Yi 1, be the
indicator of this event.

Analysis

~

Obviously we have fq < fg.

Our algorithm overestimates only if for some b # a, hi(b) = hi(a). Let Yi 1, be the
indicator of this event.

Let X; be C[il[hi(a)]. Then

> bafb f
E |Xi] = I nENl=for 3 B (Vo] = f 4 Zbebrate o [
nl:b#a

Analysis

~

Obviously we have fq < fg.

Our algorithm overestimates only if for some b # a, hi(b) = hi(a). Let Yi 1, be the
indicator of this event.

Let X; be C[il[hi(a)]. Then

> bafb f
E |Xi] = I nENl=for 3 B (Vo] = f 4 Zbebrate o [
€[nl:b#£a

Thus,
£l 1

ke|]f|| 2

Pr(|Xi — fal > el|f]]

Since our output is the minimum out of t independent X;'s,

Since our output is the minimum out of t independent X;'s,

Pr [Fa > s|\f||1] — Prlmin{X1, ..., X¢} — fal = |[f]1]

t
_bx [A (%= tal > el

i=1

t
= PriXi—fal > elf1] <2t =5
i=1

Since our output is the minimum out of t independent X;'s,

pr[> s|\f||1]_Pr [min{X1, ..., X¢}— fal = [|f]1]

t
= Pr [/\ (IXy —fal > €]/f]1]

i=1

t
= PriXi—fal > elf1] <2t =5

The algorithm computes a linear sketch using

1 1
0 (e Iogg - (logm + Iogn))

bits of memory.

Since our output is the minimum out of t independent X;'s,

pr[> s|\f||1]_Pr [min{X1, ..., X¢}— fal = [|f]1]

t
= Pr [/\ (IXy —fal > €]/f]1]

i=1

t
= PriXi—fal > elf1] <2t =5

The algorithm computes a linear sketch using

1 1
0 (log = - (logm + Iogn))
€ o
bits of memory.

It can be generalized to turnstile model (Exercise).

Frequency Moments

Frequency Moments

The k-th frequency moment of a stream is

o2 Y =k
jen]

Frequency Moments

The k-th frequency moment of a stream is

o2 Y =k
jen]

For example, F; is the size of self-join of a relation 7.

Frequency Moments

The k-th frequency moment of a stream is

o2 Y =k
jen]

For example, F; is the size of self-join of a relation 7.

Many problems we met before can be viewed as estimating Fy for some special k.

AMS Estimator for Fy

AMS Estimator for Fy

Given (ay, ..., Qm), then algorithm first sample a uniform index | € [m].

AMS Estimator for Fy

Given (ay, ..., Qm), then algorithm first sample a uniform index | € [m].

It then count the number of entries a; with a; = aj and j > J.

AMS Estimator for Fy

Given (ay, ..., Qm), then algorithm first sample a uniform index | € [m].

It then count the number of entries a; with a; = aj and j > J.

Algorithm AMS Estimator for Fy

Init: (m,r,a) < (0,0,0).

On Input (y,A):

m++« m+1, [3~Ber(%);

if =1 then
a<+yr<+0

end if

ify=athenr+r+1

end if

Output:
m (Tk —(r— 1)k).

Analysis

Analysis

We first compute the expectation of the output X.

Analysis

We first compute the expectation of the output X.

Assuming a =j at the end of algorithm, then

f;
. . 1
EX|a=jl=Emr*—(r—-1% |a=j]=) —
i=1)
Therefore,
n

n
Z EX|a=jl=

The Variance

The Variance

j=1

Assume k > 1 and let f, £ maXjen] fj.

Assume k > 1 and let f, £ maXjen] fj.

n

j=1

n

Var(X] <k) fj-
<

k> f5

j=1

<k fj -

j=1

Assume k > 1 and let f, £ maXjen] fj.

n

j=1

n

Var[X] <k) fj-
<

k> f5

j=1

<ky f-

j=1

Applying Jensen’s inequality on g(z) =z

1/k

, We can bound above by

Assume k > 1 and let f, £ maXjen] fj.

n n
Var[X] <k) f5- |1y fF
j=1 j=1
n K—1 n
DR (R
j=1 j=1
k—1
n k n
k Kk
<k fi|)1 > f
j=1 j=1 j=1
Applying Jensen's inequality on g(z) = z!/¥, we can bound above by
k-1 1 k-1
n 1 n k n n k n k n
K\ % k k 1-1/k Kk k k _ 1. 1-1/kp2
k) ()] Dfr<kn > 2 D=k
j=1 j=1 j=1 j=1 j=1 j=1

Therefore,
knl-1/k
PI‘ |X Fk| EFk Tli

Therefore,
knl-1/k
PI‘ |X Fk| EFk nT

Now we can apply the standard averaging trick and median trick.

Therefore,
knl-1/k
PI‘ |X Fk| EFk nT

Now we can apply the standard averaging trick and median trick.

To kill the n!~1/* factor in the variance, we need to average Q (n!~1/¥) estimates.

Therefore,
knl-1/k

PI‘ |X Fk| EFk 5
£

Now we can apply the standard averaging trick and median trick.
To kill the n!~1/* factor in the variance, we need to average Q (n!~1/¥) estimates.

An (g, 8) estimator requires
L1 11k
0 2 log gkn (logm + logn)

bits of memory.

The Tug-of-War Sketch

The Tug-of-War Sketch

The following simple algorithm for F» outperforms AMS by using only
O(logn + logm) bits.

Algorithm Tug-of-War Sketch

Init:

A random Hash function h: [n] — {—1, 1} from a 4-universal family.
x < 0.

On Input (y,A):

x < x+A-h(y)

Output:

Output x2.

Analysis

Analysis

Let X be the value of x at the end of our algorithm.

Analysis

Let X be the value of x at the end of our algorithm.

2
E[X?] =E KZ fjh(j))] =E {Z Zri)2+ Y fifh(h()| = Fa.
jen] jen] i1j€

n]:i#j

Analysis

Let X be the value of x at the end of our algorithm.

2
E[X?] =E KZ fjh(j))] =E {Z Zri)2+ Y fifh(h()| = Fa.
jen] jen] i1j€

(n]:i#j
Using the property of 4-universal Hash family, we have

EX'|= > fifyfifE[h(i)h()h(k)h(0)]
ij.kLem]

=Y BERGT+6 Y BEEROMGP =F+6 Y 2
jen]

1j€Mnlj>i 1j€nlj>i

Therefore
Var [X?] = E [X4] — (E [x7])’
=F-F+6 Y fif

ijeMmlj>i

= F4 — F5 + 3(F3 — F4) < 2F3.

Therefore
Var [X?] =E [X*] — (E[x?])’
=F-F+6 Y fif
ijen]g>i

= F4 — F5 + 3(F3 — F4) < 2F3.

Finally, we apply the median trick and it costs

1 1
@) (2 log = (logn + log m))
€ d

bits of memory.

