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Review of the Last Lecture

Last time, we learnt Misra-Gries and Count Sketch for Frequency Estimation.
The later has the advantage of being a linear sketch.

It also generalize to turnstile model.
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Count Sketch

Algorithm Count Sketch

Init:

An array Cl[j] for j € [k] where k = %

A random Hash function h: [n] — [k] from a 2-universal family.

A random Hash function g : [n] — {—1, 1} from a 2-universal family.
On Input (y,A):

Clh(y)l + Chh(y)l +A-g(y)

Output: On query a:

Output fq = g(a) - C[h(a)].
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The Performance

We can apply the median trick to obtain:
> Pr[|fa—fa| > elifl] <5

> it costs O (é Iog% (logm + log n)) bits of memeory.

Today we will see another simple sketch algorithm.
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Count-Min

We assume that for each entry (y, A), it holds that A > 0.

Algorithm Count-Min

Init:

An array Cl[i][j] for i € [t] and j € [k] where t = log(1/8) and k = 2/¢.

Choose t independent random Hash function hy, ..., h¢ : ] — [k] from a 2-universal
family.

On Input (y,A):

For each i € [t], Clil[hi(y)] + Clillhi(y)] + A.
Output: On query a:

Output fq = minici<t Clillh(a)l.
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Analysis

~

Obviously we have fq < fg.

Our algorithm overestimates only if for some b # a, hi(b) = hi(a). Let Yi 1, be the
indicator of this event.

Let X; be C[il[hi(a)]. Then

> bafb f
E |Xi] = I nENl=for 3 B (Vo] = f 4 Zbebrate o [
€[nl:b#£a

Thus,
£l 1

ke|]f|| 2

Pr(|Xi — fal > el|f]]
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Since our output is the minimum out of t independent X;'s,

Pr [Fa > s|\f||1] — Prlmin{X1, ..., X¢} — fal = |[f]1]

t
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i=1

t
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i=1



Since our output is the minimum out of t independent X;'s,
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t
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Since our output is the minimum out of t independent X;'s,

pr[ > s|\f||1]_Pr [min{X1, ..., X¢}— fal = [|f]1]

t
= Pr [/\ (IXy —fal > €]/f]1 ]

i=1

t
= PriXi—fal > elf1] <2t =5

The algorithm computes a linear sketch using

1 1
0 ( log = - (logm + Iogn))
€ o
bits of memory.

It can be generalized to turnstile model (Exercise).
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Frequency Moments

The k-th frequency moment of a stream is

o2 Y =k
jen]

For example, F; is the size of self-join of a relation 7.

Many problems we met before can be viewed as estimating Fy for some special k.
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AMS Estimator for Fy

Given (ay, ..., Qm), then algorithm first sample a uniform index | € [m].

It then count the number of entries a; with a; = aj and j > J.

Algorithm AMS Estimator for Fy

Init: (m,r,a) < (0,0,0).

On Input (y,A):

m++« m+1, [3~Ber(%);

if =1 then
a<+yr<+0

end if

ify=athenr+r+1

end if

Output:
m (Tk —(r— 1)k).
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Analysis

We first compute the expectation of the output X.

Assuming a =j at the end of algorithm, then

f;
. . 1
EX|a=jl=Emr*—(r—-1% |a=j]=) —
i=1 )
Therefore,
n

n
Z EX|a=jl=
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Assume k > 1 and let f, £ maXjen] fj.

n

j=1

n

Var[X] <k) fj-
<

k> f5

j=1
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Applying Jensen’s inequality on g(z) =z
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, We can bound above by



Assume k > 1 and let f, £ maXjen] fj.

n n
Var[X] <k) f5- |1y fF
j=1 j=1
n K—1 n
DR (R
j=1 j=1
k—1
n k n
k Kk
<k fi| )1 > f
j=1 j=1 j=1
Applying Jensen's inequality on g(z) = z!/¥, we can bound above by
k-1 1 k-1
n 1 n k n n k n k n
K\ % k k 1-1/k Kk k k _ 1. 1-1/kp2
k) ()] Dfr<kn > 2 D=k
j=1 j=1 j=1 j=1 j=1 j=1
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Therefore,
knl-1/k

PI‘ |X Fk| EFk 5
£

Now we can apply the standard averaging trick and median trick.
To kill the n!~1/* factor in the variance, we need to average Q (n!~1/¥) estimates.

An (g, 8) estimator requires
L1 11k
0 2 log gkn (logm + logn)

bits of memory.
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The Tug-of-War Sketch

The following simple algorithm for F» outperforms AMS by using only
O(logn + logm) bits.

Algorithm Tug-of-War Sketch

Init:

A random Hash function h: [n] — {—1, 1} from a 4-universal family.
x < 0.

On Input (y,A):

x < x+A-h(y)

Output:

Output x2.
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Analysis

Let X be the value of x at the end of our algorithm.

2
E[X?] =E KZ fjh(j)) ] =E {Z Zri)2+ Y fifh(h()| = Fa.
jen] jen] i1j€

(n]:i#j
Using the property of 4-universal Hash family, we have

EX'|= >  fifyfifE[h(i)h()h(k)h(0)]
ij.kLem]

=Y BERGT+6 Y BEEROMGP =F+6 Y 2
jen]

1j€Mnlj>i 1j€nlj>i



Therefore
Var [X?] = E [X4] — (E [x7])’
=F-F+6 Y  fif

ijeMmlj>i

= F4 — F5 + 3(F3 — F4) < 2F3.



Therefore
Var [X?] =E [X*] — (E[x?])’
=F-F+6 Y  fif
ijen]g>i

= F4 — F5 + 3(F3 — F4) < 2F3.

Finally, we apply the median trick and it costs

1 1
@) (2 log = (logn + log m))
€ d

bits of memory.



