Algorithms for Big Data (V)

Chihao Zhang

Shanghai Jiao Tong University

Oct. 18, 2019

・ロット (四)・ (目)・ (日)・ (日)

Review of the Last Lecture

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Last time, we learnt Misra-Gries and Count Sketch for Frequency Estimation.

Last time, we learnt Misra-Gries and Count Sketch for Frequency Estimation.

The later has the advantage of being a linear sketch.

Last time, we learnt Misra-Gries and Count Sketch for Frequency Estimation.

The later has the advantage of being a linear sketch.

It also generalize to turnstile model.

Count Sketch

Count Sketch

Algorithm Count Sketch

Init:

An array C[j] for $j \in [k]$ where $k = \frac{3}{\epsilon^2}$.

A random Hash function $h : [n] \to [k]$ from a 2-universal family.

A random Hash function $g : [n] \rightarrow \{-1, 1\}$ from a 2-universal family.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

On Input (y, Δ) : $C[h(y)] \leftarrow C[h(y)] + \Delta \cdot g(y)$ Output: On query a: Output $\hat{f}_{\alpha} = g(\alpha) \cdot C[h(\alpha)].$

The Performance

We can apply the median trick to obtain:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Performance

We can apply the median trick to obtain:

・ロト・個ト・ヨト・ヨト ヨー つへぐ

Today we will see another simple sketch algorithm.

Count-Min

Count-Min

We assume that for each entry (y, Δ) , it holds that $\Delta \ge 0$.

Count-Min

We assume that for each entry (y, Δ) , it holds that $\Delta \ge 0$.

Algorithm Count-Min

Init:

```
An array C[i][j] for i\in [t] and j\in [k] where t=\text{log}(1/\delta) and k=2/\epsilon.
```

Choose t independent random Hash function $h_1,\ldots,h_t:[n]\to [k]$ from a 2-universal family.

On Input (y, Δ) : For each $i \in [t]$, $C[i][h_i(y)] \leftarrow C[i][h_i(y)] + \Delta$. Output: On query a: Output $\widehat{f}_a = \min_{1 \le i \le t} C[i][h(a)]$.

Obviously we have $f_{\mathfrak{a}}\leqslant \widehat{f}_{\mathfrak{a}}.$

Obviously we have $f_a \leqslant \widehat{f}_a.$

Our algorithm overestimates only if for some $b \neq a$, $h_i(b) = h_i(a)$. Let $Y_{i,b}$ be the indicator of this event.

Obviously we have $f_a \leqslant \widehat{f}_a$.

Our algorithm overestimates only if for some $b \neq a$, $h_i(b) = h_i(a)$. Let $Y_{i,b}$ be the indicator of this event.

Let X_i be $C[i][h_i(a)]$. Then

$$\mathbf{E}\left[\widehat{X}_{i}\right] = \sum_{b \in [n]} f_{b} \mathbf{E}\left[Y_{i,b}\right] = f_{a} + \sum_{b \in [n]: b \neq a} f_{b} \mathbf{E}\left[Y_{i,b}\right] = f_{a} + \frac{\sum_{b \in [n]: b \neq a} f_{b}}{k} \leqslant f_{a} + \frac{\|\mathbf{f}\|_{1}}{k}.$$

Obviously we have $f_a \leqslant \widehat{f}_a.$

Our algorithm overestimates only if for some $b \neq a$, $h_i(b) = h_i(a)$. Let $Y_{i,b}$ be the indicator of this event.

Let X_i be $C[i][h_i(a)]$. Then

$$\mathbf{E}\left[\widehat{X}_{i}\right] = \sum_{b \in [n]} f_{b} \mathbf{E}\left[Y_{i,b}\right] = f_{a} + \sum_{b \in [n]: b \neq a} f_{b} \mathbf{E}\left[Y_{i,b}\right] = f_{a} + \frac{\sum_{b \in [n]: b \neq a} f_{b}}{k} \leqslant f_{a} + \frac{\|\mathbf{f}\|_{1}}{k}.$$

Thus,

$$\mathbf{Pr}\left[|\mathsf{X}_{\mathsf{i}}-\mathsf{f}_{\mathfrak{a}}| \geq \varepsilon \|\mathbf{f}\|_{1}\right] \leqslant \frac{\|\mathbf{f}\|_{1}}{k\varepsilon \|\mathbf{f}\|_{1}} = \frac{1}{2}.$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$$\begin{split} \mathbf{Pr}\left[\widehat{f}_{\alpha} - f_{\alpha} \geqslant \varepsilon \|\mathbf{f}\|_{1}\right] &= \mathbf{Pr}\left[|\min\{X_{1}, \dots, X_{t}\} - f_{\alpha}| \geqslant \|\mathbf{f}\|_{1}\right] \\ &= \mathbf{Pr}\left[\bigwedge_{i=1}^{t} \left(|X_{i} - f_{\alpha}| \geqslant \varepsilon \|\mathbf{f}\|_{1}\right)\right] \\ &= \prod_{i=1}^{t} \mathbf{Pr}\left[|X_{i} - f_{\alpha}| \geqslant \varepsilon \|\mathbf{f}\|_{1}\right] \leqslant 2^{-t} = \delta. \end{split}$$

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

$$\begin{split} \mathbf{Pr}\left[\widehat{\mathbf{f}}_{a} - \mathbf{f}_{a} \ge \varepsilon \|\mathbf{f}\|_{1}\right] &= \mathbf{Pr}\left[|\min\left\{X_{1}, \dots, X_{t}\right\} - \mathbf{f}_{a}| \ge \|\mathbf{f}\|_{1}\right] \\ &= \mathbf{Pr}\left[\bigwedge_{i=1}^{t} \left(|X_{i} - \mathbf{f}_{a}| \ge \varepsilon \|\mathbf{f}\|_{1}\right)\right] \\ &= \prod_{i=1}^{t} \mathbf{Pr}\left[|X_{i} - \mathbf{f}_{a}| \ge \varepsilon \|\mathbf{f}\|_{1}\right] \leqslant 2^{-t} = \delta. \end{split}$$

The algorithm computes a linear sketch using

$$O\left(\frac{1}{\epsilon}\log\frac{1}{\delta}\cdot(\log m + \log n)\right)$$

bits of memory.

$$\begin{split} \mathbf{Pr}\left[\widehat{\mathbf{f}}_{\alpha} - \mathbf{f}_{\alpha} \ge \varepsilon \|\mathbf{f}\|_{1}\right] &= \mathbf{Pr}\left[|\min\left\{X_{1}, \dots, X_{t}\right\} - \mathbf{f}_{\alpha}| \ge \|\mathbf{f}\|_{1}\right] \\ &= \mathbf{Pr}\left[\bigwedge_{i=1}^{t} \left(|X_{i} - \mathbf{f}_{\alpha}| \ge \varepsilon \|\mathbf{f}\|_{1}\right)\right] \\ &= \prod_{i=1}^{t} \mathbf{Pr}\left[|X_{i} - \mathbf{f}_{\alpha}| \ge \varepsilon \|\mathbf{f}\|_{1}\right] \leqslant 2^{-t} = \delta. \end{split}$$

The algorithm computes a linear sketch using

$$O\left(\frac{1}{\epsilon}\log\frac{1}{\delta}\cdot(\log m + \log n)\right)$$

bits of memory.

It can be generalized to turnstile model (Exercise).

Frequency Moments

The k-th frequency moment of a stream is

$$F_{k} \triangleq \sum_{j \in [n]} f_{j}^{k} = \|\mathbf{f}\|_{k}^{k}.$$

The k-th frequency moment of a stream is

$$F_k \triangleq \sum_{j \in [n]} f_j^k = \|\mathbf{f}\|_k^k.$$

For example, F_2 is the size of self-join of a relation r.

The k-th frequency moment of a stream is

$$F_{k} \triangleq \sum_{j \in [n]} f_{j}^{k} = \|\mathbf{f}\|_{k}^{k}.$$

For example, F_2 is the size of self-join of a relation r.

Many problems we met before can be viewed as estimating F_k for some special k.

<□> <0</p>

Given $\langle a_1, \ldots, a_m \rangle$, then algorithm first sample a uniform index $J \in [m]$.

Given $\langle a_1, \ldots, a_m \rangle$, then algorithm first sample a uniform index $J \in [m]$.

It then count the number of entries a_j with $a_j = a_J$ and $j \ge J$.

Given $\langle a_1, \ldots, a_m \rangle$, then algorithm first sample a uniform index $J \in [m]$.

It then count the number of entries a_j with $a_j = a_J$ and $j \ge J$.

Algorithm AMS Estimator for F_k
Init: $(m, r, a) \leftarrow (0, 0, 0).$
On Input (y, Δ) :
$\mathfrak{m} \leftarrow \mathfrak{m} + 1$, $\beta \sim \operatorname{Ber}(\frac{1}{\mathfrak{m}})$;
if $\beta = 1$ then
$a \leftarrow y, r \leftarrow 0;$
end if
if $y = a$ then $r \leftarrow r + 1$
end if
Output:
$\mathfrak{m}(\mathbf{r}^{\mathbf{k}}-(\mathbf{r}-1)^{\mathbf{k}}).$

We first compute the expectation of the output X.

We first compute the expectation of the output X.

Assuming a = j at the end of algorithm, then

$$\mathbf{E}\left[X \mid a=j\right] = \mathbf{E}\left[\mathbf{m}(\mathbf{r}^{k}-(\mathbf{r}-1)^{k}) \mid a=j\right] = \sum_{i=1}^{f_{j}} \frac{1}{f_{j}} \cdot \mathbf{m}\left(i^{k}-(i-1)^{k}\right) = \frac{\mathbf{m}}{f_{j}} \cdot f_{j}^{k}.$$

Therefore,

$$\mathbf{E}\left[X\right] = \sum_{j=1}^{n} \mathbf{Pr}\left[a=j\right] \cdot \mathbf{E}\left[X \mid a=j\right] = \sum_{j=1}^{n} \frac{f_{j}}{m} \cdot \frac{m}{f_{j}} \cdot f_{j}^{k} = F_{k}.$$

The Variance

▲□▶▲□▶▲∃▶▲∃▶ ■ のへの

The Variance

$$\begin{split} \text{Var} \left[X \right] &\leqslant \mathbf{E} \left[X^2 \right] = \sum_{j=1}^n \frac{f_j}{m} \sum_{i=1}^{f_j} \frac{1}{f_j} \cdot m^2 \left(i^k - (i-1)^k \right)^2 \\ &\leqslant m \sum_{j=1}^n \sum_{i=1}^{f_j} k i^{k-1} \left(i^k - (i-1)^k \right) \\ &\leqslant m \sum_{j=1}^n k f_j^{k-1} \sum_{i=1}^{f_j} \left(i^k - (i-1)^k \right) \\ &= m \sum_{j=1}^n k f_j^{k-1} \cdot f_j^k = k \left(\sum_{j=1}^n f_j \right) \left(\sum_{j=1}^n f_j^{2k-1} \right). \end{split}$$

・ロト・4回ト・4目ト・目・9000

Assume $k \ge 1$ and let $f_* \triangleq \max_{j \in [n]} f_j$.

<□> <0</p>

Assume $k \ge 1$ and let $f_* \triangleq \max_{j \in [n]} f_j$.

$$\begin{aligned} & \operatorname{Var}\left[X\right] \leqslant k \sum_{j=1}^{n} f_{j} \cdot \left(f_{*}^{k-1} \sum_{j=1}^{n} f_{j}^{k}\right) \\ & \leqslant k \sum_{j=1}^{n} f_{j} \cdot \left(\left(f_{*}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k}\right) \\ & \leqslant k \sum_{j=1}^{n} f_{j} \cdot \left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k} \end{aligned}$$
Assume $k \ge 1$ and let $f_* \triangleq \max_{j \in [n]} f_j$.

$$\begin{split} \text{Var}\left[X\right] &\leqslant k \sum_{j=1}^{n} f_{j} \cdot \left(f_{*}^{k-1} \sum_{j=1}^{n} f_{j}^{k}\right) \\ &\leqslant k \sum_{j=1}^{n} f_{j} \cdot \left(\left(f_{*}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k}\right) \\ &\leqslant k \sum_{j=1}^{n} f_{j} \cdot \left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k} \end{split}$$

Applying Jensen's inequality on $g(z) = z^{1/k}$, we can bound above by

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Assume $k \geqslant 1$ and let $f_* \triangleq \mathsf{max}_{j \in [n]} \, f_j.$

$$\begin{split} \text{Var}\left[X\right] &\leqslant k \sum_{j=1}^{n} f_{j} \cdot \left(f_{*}^{k-1} \sum_{j=1}^{n} f_{j}^{k}\right) \\ &\leqslant k \sum_{j=1}^{n} f_{j} \cdot \left(\left(f_{*}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k}\right) \\ &\leqslant k \sum_{j=1}^{n} f_{j} \cdot \left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k} \end{split}$$

Applying Jensen's inequality on $g(z)=z^{1/k}\mbox{,}$ we can bound above by

$$k\sum_{j=1}^{n} \left(f_{j}^{k}\right)^{\frac{1}{k}} \left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k} \leqslant kn^{1-1/k} \left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{1}{k}} \left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k} = kn^{1-1/k} F_{k}^{2}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$\Pr\left[|X - F_k| \ge \varepsilon F_k\right] \le \frac{kn^{1-1/k}}{\varepsilon^2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$$\mathbf{Pr}\left[|X-\mathsf{F}_{k}| \geqslant \varepsilon \mathsf{F}_{k}\right] \leqslant \frac{kn^{1-1/k}}{\varepsilon^{2}}.$$

Now we can apply the standard averaging trick and median trick.

$$\mathbf{Pr}\left[|X-\mathsf{F}_{k}| \geq \varepsilon \mathsf{F}_{k}\right] \leqslant \frac{kn^{1-1/k}}{\varepsilon^{2}}.$$

Now we can apply the standard averaging trick and median trick.

To kill the $n^{1-1/k}$ factor in the variance, we need to average $\Omega(n^{1-1/k})$ estimates.

$$\mathbf{Pr}\left[|X-\mathsf{F}_{k}| \geq \varepsilon \mathsf{F}_{k}\right] \leqslant \frac{kn^{1-1/k}}{\varepsilon^{2}}.$$

Now we can apply the standard averaging trick and median trick.

To kill the $n^{1-1/k}$ factor in the variance, we need to average $\Omega(n^{1-1/k})$ estimates.

An (ε, δ) estimator requires

$$O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}kn^{1-1/k}\left(\log m + \log n\right)\right)$$

bits of memory.

The Tug-of-War Sketch

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The Tug-of-War Sketch

The following simple algorithm for F_2 outperforms AMS by using only $O(\log n + \log m)$ bits.

```
Algorithm Tug-of-War SketchInit:<br/>A random Hash function h : [n] \rightarrow \{-1, 1\} from a 4-universal family.<br/>x \leftarrow 0.On Input (y, \Delta):<br/>x \leftarrow x + \Delta \cdot h(y)Output:<br/>Output x^2.
```

Let X be the value of x at the end of our algorithm.

Let X be the value of x at the end of our algorithm.

$$\mathbf{E}\left[X^2\right] = \mathbf{E}\left[\left(\sum_{j\in[n]}f_jh(j)\right)^2\right] = \mathbf{E}\left[\sum_{j\in[n]}f_j^2h(j)^2 + \sum_{i,j\in[n]:i\neq j}f_if_jh(i)h(j)\right] = F_2.$$

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三> <三</p>

Let X be the value of x at the end of our algorithm.

$$\mathbf{E}\left[X^{2}\right] = \mathbf{E}\left[\left(\sum_{j\in[n]}f_{j}h(j)\right)^{2}\right] = \mathbf{E}\left[\sum_{j\in[n]}f_{j}^{2}h(j)^{2} + \sum_{i,j\in[n]:i\neq j}f_{i}f_{j}h(i)h(j)\right] = F_{2}.$$

Using the property of 4-universal Hash family, we have

$$\begin{split} E\left[X^{4}\right] &= \sum_{i,j,k,\ell \in [n]} f_{i}f_{j}f_{k}f_{\ell}E\left[h(i)h(j)h(k)h(\ell)\right] \\ &= \sum_{j \in [n]} f_{j}^{4}E\left[h(j)^{4}\right] + 6\sum_{i,j \in [n]: j > i} f_{i}^{2}f_{j}^{2}E\left[h(i)^{2}h(j)^{2}\right] = F_{4} + 6\sum_{i,j \in [n]: j > i} f_{i}^{2}f_{j}^{2}. \end{split}$$

$$\begin{aligned} \text{Var} \left[X^2 \right] &= \text{E} \left[X^4 \right] - \left(\text{E} \left[X^2 \right] \right)^2 \\ &= F_4 - F_2^2 + 6 \sum_{i,j \in [n]: j > i} f_i^2 f_j^2 \\ &= F_4 - F_2^2 + 3(F_2^2 - F_4) \leqslant 2F_2^2. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$$\begin{aligned} \text{Var} \left[X^2 \right] &= \text{E} \left[X^4 \right] - \left(\text{E} \left[X^2 \right] \right)^2 \\ &= F_4 - F_2^2 + 6 \sum_{i,j \in [n]: j > i} f_i^2 f_j^2 \\ &= F_4 - F_2^2 + 3(F_2^2 - F_4) \leqslant 2F_2^2. \end{aligned}$$

Finally, we apply the median trick and it costs

$$O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\left(\log n + \log m\right)\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

bits of memory.