
Algorithms for Big Data (V)

Chihao Zhang

Shanghai Jiao Tong University

Oct. 18, 2019



Review of the Last Lecture

Last time, we learnt Misra-Gries and Count Sketch for Frequency Estimation.

The later has the advantage of being a linear sketch.

It also generalize to turnstile model.



Count Sketch

Algorithm Count Sketch
Init:
An array C[j] for j ∈ [k] where k = 3

ε2 .
A random Hash function h : [n]→ [k] from a 2-universal family.
A random Hash function g : [n]→ {−1, 1} from a 2-universal family.
On Input (y,∆):
C[h(y)]← C[h(y)] + ∆ · g(y)
Output: On query a:
Output f̂a = g(a) · C[h(a)].



The Performance

We can apply the median trick to obtain:
▶ Pr

[∣∣∣f̂a − fa

∣∣∣ ⩾ ε∥f∥2
]
⩽ δ;

▶ it costs O
( 1
ε2 log 1

δ
(logm+ logn)

)
bits of memeory.

Today we will see another simple sketch algorithm.



Count-Min

We assume that for each entry (y,∆), it holds that ∆ ⩾ 0.

Algorithm Count-Min
Init:
An array C[i][j] for i ∈ [t] and j ∈ [k] where t = log(1/δ) and k = 2/ε.
Choose t independent random Hash function h1, . . . ,ht : [n]→ [k] from a 2-universal
family.
On Input (y,∆):
For each i ∈ [t], C[i][hi(y)]← C[i][hi(y)] + ∆.
Output: On query a:
Output f̂a = min1⩽i⩽tC[i][h(a)].



Analysis

Obviously we have fa ⩽ f̂a.

Our algorithm overestimates only if for some b ̸= a, hi(b) = hi(a). Let Yi,b be the
indicator of this event.

Let Xi be C[i][hi(a)]. Then

E
[
X̂i

]
=

∑
b∈[n]

fbE [Yi,b] = fa +
∑

b∈[n]:b ̸=a

fbE [Yi,b] = fa +

∑
b∈[n]:b̸=a fb

k
⩽ fa +

∥f∥1
k

.

Thus,
Pr [|Xi − fa| ⩾ ε∥f∥1] ⩽

∥f∥1
kε∥f∥1

=
1
2.



Since our output is the minimum out of t independent Xi’s,

Pr
[
f̂a − fa ⩾ ε∥f∥1

]
= Pr [|min {X1, . . . ,Xt}− fa| ⩾ ∥f∥1]

= Pr

[
t∧

i=1
(|Xi − fa| ⩾ ε∥f∥1)

]

=

t∏
i=1

Pr [|Xi − fa| ⩾ ε∥f∥1] ⩽ 2−t = δ.

The algorithm computes a linear sketch using

O

(
1
ε

log 1
δ
· (logm+ logn)

)
bits of memory.

It can be generalized to turnstile model (Exercise).



Frequency Moments

The k-th frequency moment of a stream is

Fk ≜
∑
j∈[n]

fkj = ∥f∥kk.

For example, F2 is the size of self-join of a relation r.

Many problems we met before can be viewed as estimating Fk for some special k.



AMS Estimator for Fk
Given ⟨a1, . . . ,am⟩, then algorithm first sample a uniform index J ∈ [m].

It then count the number of entries aj with aj = aJ and j ⩾ J.

Algorithm AMS Estimator for Fk
Init: (m, r,a)← (0, 0, 0).
On Input (y,∆):
m← m+ 1, β ∼ Ber( 1

m
);

if β = 1 then
a← y,r← 0;

end if
if y = a then r← r+ 1
end if
Output:
m

(
rk − (r− 1)k

)
.



Analysis

We first compute the expectation of the output X.

Assuming a = j at the end of algorithm, then

E [X | a = j] = E
[
m(rk − (r− 1)k)

∣∣ a = j
]
=

fj∑
i=1

1
fj
·m

(
ik − (i− 1)k

)
=

m

fj
· fkj .

Therefore,

E [X] =

n∑
j=1

Pr [a = j] · E [X | a = j] =

n∑
j=1

fj

m
· m
fj
· fkj = Fk.



The Variance

Var [X] ⩽ E
[
X2] = n∑

j=1

fj

m

fj∑
i=1

1
fj
·m2 (ik − (i− 1)k

)2

⩽ m

n∑
j=1

fj∑
i=1

kik−1 (ik − (i− 1)k
)

⩽ m

n∑
j=1

kfk−1
j

fj∑
i=1

(
ik − (i− 1)k

)

= m

n∑
j=1

kfk−1
j · fkj = k

 n∑
j=1

fj

 n∑
j=1

f2k−1
j

 .



Assume k ⩾ 1 and let f∗ ≜ maxj∈[n] fj.

Var [X] ⩽ k

n∑
j=1

fj ·

fk−1
∗

n∑
j=1

fkj


⩽ k

n∑
j=1

fj ·

(
fk∗
)k−1

k

n∑
j=1

fkj


⩽ k

n∑
j=1

fj ·

 n∑
j=1

fkj

k−1
k n∑

j=1
fkj

Applying Jensen’s inequality on g(z) = z1/k, we can bound above by

k

n∑
j=1

(
fkj
) 1

k

 n∑
j=1

fkj

k−1
k n∑

j=1
fkj ⩽ kn1−1/k

 n∑
j=1

fkj

 1
k
 n∑

j=1
fkj

k−1
k n∑

j=1
fkj = kn1−1/kF2

k.



Therefore,

Pr [|X− Fk| ⩾ εFk] ⩽
kn1−1/k

ε2 .

Now we can apply the standard averaging trick and median trick.

To kill the n1−1/k factor in the variance, we need to average Ω
(
n1−1/k) estimates.

An (ε, δ) estimator requires

O

(
1
ε2 log 1

δ
kn1−1/k (logm+ logn)

)
bits of memory.



The Tug-of-War Sketch

The following simple algorithm for F2 outperforms AMS by using only
O(logn+ logm) bits.

Algorithm Tug-of-War Sketch
Init:
A random Hash function h : [n]→ {−1, 1} from a 4-universal family.
x← 0.
On Input (y,∆):
x← x+ ∆ · h(y)
Output:
Output x2.



Analysis

Let X be the value of x at the end of our algorithm.

E
[
X2] = E

 ∑
j∈[n]

fjh(j)

2 = E

 ∑
j∈[n]

f2
jh(j)

2 +
∑

i,j∈[n]:i ̸=j

fifjh(i)h(j)

 = F2.

Using the property of 4-universal Hash family, we have

E
[
X4] = ∑

i,j,k,ℓ∈[n]

fifjfkfℓE [h(i)h(j)h(k)h(ℓ)]

=
∑
j∈[n]

f4
jE

[
h(j)4]+ 6

∑
i,j∈[n]:j>i

f2
if

2
jE

[
h(i)2h(j)2] = F4 + 6

∑
i,j∈[n]:j>i

f2
if

2
j .



Therefore

Var
[
X2] = E

[
X4]− (

E
[
X2])2

= F4 − F2
2 + 6

∑
i,j∈[n]:j>i

f2
if

2
j

= F4 − F2
2 + 3(F2

2 − F4) ⩽ 2F2
2.

Finally, we apply the median trick and it costs

O

(
1
ε2 log 1

δ
(logn+ logm)

)
bits of memory.


