
Algorithms for Big Data (IV)

Chihao Zhang

Shanghai Jiao Tong University

Oct. 11, 2019

Algorithms for Big Data (IV) 1/19

Review of the Last Lecture

Last time, we introduced AMS algorithm for counting distinct elements in the streaming
model.

We are given a sequence of numbers ⟨a1, . . . , am⟩ where each ai ∈ [n].

It defines a frequency vector f = (f1, . . . , fn) where fi =
��{k ∈ [m] : ak = i

}��.
We want to compute the number d =

��{i ∈ [n] : fi > 0
}��.

Algorithms for Big Data (IV) 2/19

Algorithm AMS Algorithm for Counting Distinct Elements
Init:
A random Hash function h : [n]→ [n] from a 2-universal family
Z← 0

On Input y:
if zero(h(y)) > Z then

Z← zero(h(y))
end if
Output:
d̂ = 2Z+

1
2 .

Algorithms for Big Data (IV) 3/19

Using O(log 1
δ log n) bits of memory, we can obtain

Pr
[
d
3
≤ d̂ ≤ 3d

]
≥ 1 − δ .

We also introduced the BJKST algorithm, a refinement of the AMS algorithm.

We will show today that the BJKST algorithm can produce d̂ which is a 1 ± ε
approximation of d for any ε > 0.

Algorithms for Big Data (IV) 4/19

The BJKST Algorithm
The following refinement is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan.

Algorithm BJKST Algorithm for Counting Distinct Elements

Init: Random Hash functions h : [n] → [n], g : [n] → [bε−4 log2 n], both from 2-
universal families; Z← 0, B← �
On Input y:
if zero(h(y)) ≥ Z then

B← B ∪
{
(g(y), zeros(h(y)))

}
while |B| ≥ c/ε2 do

Z← Z+ 1
Remove all (α , β) with β < Z from B

end while
end if
Output: d̂ = |B| 2Z

Algorithms for Big Data (IV) 5/19

The algorithm maintains a bucket B, which stores those y whose zeros(h(y)) is larger
than the current Z.

We set a cap L = c
ε2 for the size of B:

▶ if L = ∞, B stores all entries, and the algorithm is exact;
▶ if L = 2, the algorithm is equivalent to AMS.

Therefore, the size of B is a trade-off between the memory consumption and the
accuracy of the algorithm.

Algorithms for Big Data (IV) 6/19

Analysis

To analyze the algorithm, we first assume that g is simply the identity function from [n]
to [n], namely g(y) = y for all y ∈ [n].

We need to store the whole B, whose size is O
(
ε−2

)
.

Similar to AMS, for every k ∈ [n], Xk,r is the indicator that h(k) has at least r trailing
zeros.

Define Yr =
∑

k∈[n]:fk>0 Xk,r as the number of h(ai) with trailing zero at least r.

We already know from the last lecture that E [Yr] =
d
2r and Var [Yr] ≤ d

2r .

Algorithms for Big Data (IV) 7/19

If Z = t at the end of the algorithm, then Yt = |B| and d̂ = Yt2
t.

We use A to denote the bad event that
��Yt2

t − d
�� ≥ εd, or equivalently����Yt −

d
2t

���� ≥ εd
2t
.

We will bound the probability of A using the following argument
▶ if t is small, then E [Yt] =

d
2t is large, so we can apply concentration inequalities;

▶ the value t is unlikely to be very large.

We let s be the threshold for small/large value mentioned above.

Algorithms for Big Data (IV) 8/19

Pr [A] =
log n∑
r=1

Pr
[����Yr −

d
2r

���� ≥ εd
2r
∧ t = r

]
≤

s−1∑
r=1

Pr
[����Yr −

d
2r

���� ≥ εd
2r

]
+

log n∑
r=s

Pr [t = r]

=
s−1∑
r=1

Pr [|Yr − E [Yr]| ≥ εd/2r] + Pr
[
Ys−1 ≥ c/ε2

]
≤

s−1∑
r=1

2r

ε2d
+

ε2d
c2s−1

≤ 2s

ε2d
+

ε2d
c2s−1

.

So if we choose s such that d
2s = Θ

(
ε−2

)
, Pr [A] can be bounded by any constant

(depending on c).

Algorithms for Big Data (IV) 9/19

Space Complexity

We need to store
▶ the function h: O (log n);
▶ the function g: O (log n);
▶ the bucket B: O

(
c
ε2 · log ran(g)

)
= O

(
c
ε2 log n

)
.

The bottleneck is to store B.

Instead of using identity function g, we can tolerate collisions (with at most constant
probability).

This helps to reduce the memory needed (Exercise).

Algorithms for Big Data (IV) 10/19

Freqency Estimation

Consider a stream of numbers ⟨a1, . . . , am⟩ and its frequency vector f = (f1, . . . , fn).

Another fundamental problem is to estimate fa for each query a ∈ [n].

It is closely related to the Frequency problem which asks for the set
{
j : fj > m/k

}
.

We now describe a deterministic algorithm for Frequency-Estimation.

Algorithms for Big Data (IV) 11/19

Misra-Gries

Algorithm Misra-Gries Algorithm for Frequency-Estimation
Init: A table A

On Input y:
if y ∈ keys(A) then A[y]← A[y] + 1
else if

��keys(A)�� ≤ k − 1 then A[j]← 1
else

for all ℓ ∈ keys(A) do
A[ℓ]← A[ℓ] − 1
if A[ℓ] = 0 then

Remove ℓ from A
end if

end for
end if

Algorithms for Big Data (IV) 12/19

Algorithm Misra-Gries (cont’d))
Output: On query j,
if j ∈ keys(A) then

f̂j = A[j]
else

f̂j = 0
end if

Algorithms for Big Data (IV) 13/19

Analysis

The algorithm uses O (k (logm+ log n)) bits of memory.

It is not hard to see that for each j ∈ [n], the output f̂j satisfies

fj −
m
k
≤ f̂j ≤ fj.

If fj > m/k, then j is in the table A. The reverse is not correct!

Algorithms for Big Data (IV) 14/19

In Misra-Gries, we compute a table A

The table A stores information about the stream, so we can extract frequency from it.

However, Misra-Gries suffers from the following main drawbacks:
▶ given two tables A1 and A2 with respect to σ1 and σ2 respectively, we don’t know

how to obtain the table for σ1 ◦ σ2 (algorithms with this property are called
sketches);

▶ it does not extend to the turnstile model.

In the turnstile model, each entry of the stream is a pair (aj,∆j).

Upon receiving (aj,∆j), we update faj to faj +∆j.

Algorithms for Big Data (IV) 15/19

Count Sketch

Algorithm Count Sketch
Init:
An array C[j] for j ∈ [k] where k = 3

ε2 .
A random Hash function h : [n]→ [k] from a 2-universal family.
A random Hash function g : [n]→ {−1, 1} from a 2-universal family.

On Input (y,∆):
C[h(y)]← C[h(y)] + ∆ · g(y)
Output: On query a:
Output f̂a = g(a) · C[h(a)].

Algorithms for Big Data (IV) 16/19

Analysis

Let X = f̂a be the output on the query a.

For every j ∈ [n], let Yj be the indicator of h(j) = h(a).

X = g(a) ·
n∑

j=1

fj · g(j) · Yj.

We have

E [X] = E
g(a) · g(a) · fa · Ya +

∑
j∈[n]\{a}

g(a) · fj · g(j) · Yj

 = fa.

Let Z ≜
∑

j∈[n]\{a} fj · g(a) · g(j) · Yj, then X = fa + Z and Var [X] = Var [Z].

Algorithms for Big Data (IV) 17/19

E
[
Z2

]
= E

∑

j∈[n]\{a}
fj · g(a) · g(j)Yj

= E

∑

j∈[n]\{a}
f2j · Y2

j +
∑

j, j′∈[n]\{a}:j,j;
fj · fj′ · g(j) · g(j′) · Yj · Yj′

= E

∑

j∈[n]\{a}
f2j · Y2

j

 =
∑

j∈[n]\{a}
f2j · E

[
Y2
j

]
Note that for every j , a,

E
[
Y2
j

]
= E

[
Yj
]
= Pr [h(j) = h(a)] =

1

k
.

Therefore

E
[
Z2

]
=

∑
j∈[n]\{a} f

2
j

k
≤
∥f∥22
k
.

Algorithms for Big Data (IV) 18/19

Var [X] = Var [Z] = E
[
Z2

]
− (E [Z])2 ≤

∥f∥22
k
.

By Chebyshev,

Pr
[���̂fa − fa��� ≥ ε ∥f∥2

]
≤ 1

kε2
=

1

3
.

We can then use Median trick to boost the algorithm so that

▶ Pr
[���̂fa − fa��� ≥ ε ∥f∥2

]
≤ δ ;

▶ it costs O
(
1
ε2 log

1
δ (logm+ log n)

)
bits of memeory.

Compare the performance (in terms of accuracy and space consumption) of Misra-Gries
and Count Sketch (Exercise).

Algorithms for Big Data (IV) 19/19

