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Review of the Last Lecture

Last time, we introduced AMS algorithm for counting distinct elements in the streaming
model.

We are given a sequence of numbers ⟨a1, . . . , am⟩ where each ai ∈ [n].

It defines a frequency vector f = (f1, . . . , fn) where fi =
��{k ∈ [m] : ak = i

}��.
We want to compute the number d =

��{i ∈ [n] : fi > 0
}��.
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Algorithm AMS Algorithm for Counting Distinct Elements
Init:
A random Hash function h : [n]→ [n] from a 2-universal family
Z← 0

On Input y:
if zero(h(y)) > Z then

Z← zero(h(y))
end if
Output:
d̂ = 2Z+

1
2 .
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Using O(log 1
δ log n) bits of memory, we can obtain

Pr
[
d
3
≤ d̂ ≤ 3d

]
≥ 1 − δ .

We also introduced the BJKST algorithm, a refinement of the AMS algorithm.

We will show today that the BJKST algorithm can produce d̂ which is a 1 ± ε
approximation of d for any ε > 0.
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The BJKST Algorithm
The following refinement is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan.

Algorithm BJKST Algorithm for Counting Distinct Elements

Init: Random Hash functions h : [n] → [n], g : [n] → [bε−4 log2 n], both from 2-
universal families; Z← 0, B← �
On Input y:
if zero(h(y)) ≥ Z then

B← B ∪
{
(g(y), zeros(h(y)))

}
while |B| ≥ c/ε2 do

Z← Z+ 1
Remove all (α , β) with β < Z from B

end while
end if
Output: d̂ = |B| 2Z
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The algorithm maintains a bucket B, which stores those y whose zeros(h(y)) is larger
than the current Z.

We set a cap L = c
ε2 for the size of B:

▶ if L = ∞, B stores all entries, and the algorithm is exact;
▶ if L = 2, the algorithm is equivalent to AMS.

Therefore, the size of B is a trade-off between the memory consumption and the
accuracy of the algorithm.

Algorithms for Big Data (IV) 6/19



Analysis

To analyze the algorithm, we first assume that g is simply the identity function from [n]
to [n], namely g(y) = y for all y ∈ [n].

We need to store the whole B, whose size is O
(
ε−2

)
.

Similar to AMS, for every k ∈ [n], Xk,r is the indicator that h(k) has at least r trailing
zeros.

Define Yr =
∑

k∈[n]:fk>0 Xk,r as the number of h(ai) with trailing zero at least r.

We already know from the last lecture that E [Yr] =
d
2r and Var [Yr] ≤ d

2r .

Algorithms for Big Data (IV) 7/19



If Z = t at the end of the algorithm, then Yt = |B| and d̂ = Yt2
t.

We use A to denote the bad event that
��Yt2

t − d
�� ≥ εd, or equivalently����Yt −

d
2t

���� ≥ εd
2t
.

We will bound the probability of A using the following argument
▶ if t is small, then E [Yt] =

d
2t is large, so we can apply concentration inequalities;

▶ the value t is unlikely to be very large.

We let s be the threshold for small/large value mentioned above.
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Pr [A] =
log n∑
r=1

Pr
[����Yr −

d
2r

���� ≥ εd
2r
∧ t = r

]
≤

s−1∑
r=1

Pr
[����Yr −

d
2r

���� ≥ εd
2r

]
+

log n∑
r=s

Pr [t = r]

=
s−1∑
r=1

Pr [|Yr − E [Yr]| ≥ εd/2r] + Pr
[
Ys−1 ≥ c/ε2

]
≤

s−1∑
r=1

2r

ε2d
+

ε2d
c2s−1

≤ 2s

ε2d
+

ε2d
c2s−1

.

So if we choose s such that d
2s = Θ

(
ε−2

)
, Pr [A] can be bounded by any constant

(depending on c).
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Space Complexity

We need to store
▶ the function h: O (log n);
▶ the function g: O (log n);
▶ the bucket B: O

(
c
ε2 · log ran(g)

)
= O

(
c
ε2 log n

)
.

The bottleneck is to store B.

Instead of using identity function g, we can tolerate collisions (with at most constant
probability).

This helps to reduce the memory needed (Exercise).
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Freqency Estimation

Consider a stream of numbers ⟨a1, . . . , am⟩ and its frequency vector f = (f1, . . . , fn).

Another fundamental problem is to estimate fa for each query a ∈ [n].

It is closely related to the Frequency problem which asks for the set
{
j : fj > m/k

}
.

We now describe a deterministic algorithm for Frequency-Estimation.
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Misra-Gries

Algorithm Misra-Gries Algorithm for Frequency-Estimation
Init: A table A

On Input y:
if y ∈ keys(A) then A[y]← A[y] + 1
else if

��keys(A)�� ≤ k − 1 then A[j]← 1
else

for all ℓ ∈ keys(A) do
A[ℓ]← A[ℓ] − 1
if A[ℓ] = 0 then

Remove ℓ from A
end if

end for
end if
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Algorithm Misra-Gries (cont’d))
Output: On query j,
if j ∈ keys(A) then

f̂j = A[j]
else

f̂j = 0
end if
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Analysis

The algorithm uses O (k (logm+ log n)) bits of memory.

It is not hard to see that for each j ∈ [n], the output f̂j satisfies

fj −
m
k
≤ f̂j ≤ fj.

If fj > m/k, then j is in the table A. The reverse is not correct!
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In Misra-Gries, we compute a table A

The table A stores information about the stream, so we can extract frequency from it.

However, Misra-Gries suffers from the following main drawbacks:
▶ given two tables A1 and A2 with respect to σ1 and σ2 respectively, we don’t know

how to obtain the table for σ1 ◦ σ2 (algorithms with this property are called
sketches);

▶ it does not extend to the turnstile model.

In the turnstile model, each entry of the stream is a pair (aj,∆j).

Upon receiving (aj,∆j), we update faj to faj +∆j.
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Count Sketch

Algorithm Count Sketch
Init:
An array C[j] for j ∈ [k] where k = 3

ε2 .
A random Hash function h : [n]→ [k] from a 2-universal family.
A random Hash function g : [n]→ {−1, 1} from a 2-universal family.

On Input (y,∆):
C[h(y)]← C[h(y)] + ∆ · g(y)
Output: On query a:
Output f̂a = g(a) · C[h(a)].
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Analysis

Let X = f̂a be the output on the query a.

For every j ∈ [n], let Yj be the indicator of h(j) = h(a).

X = g(a) ·
n∑

j=1

fj · g(j) · Yj.

We have

E [X] = E
g(a) · g(a) · fa · Ya +

∑
j∈[n]\{a}

g(a) · fj · g(j) · Yj

 = fa.

Let Z ≜
∑

j∈[n]\{a} fj · g(a) · g(j) · Yj, then X = fa + Z and Var [X] = Var [Z].
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E
[
Z2

]
= E


∑

j∈[n]\{a}
fj · g(a) · g(j)Yj


= E


∑

j∈[n]\{a}
f2j · Y2

j +
∑

j, j′∈[n]\{a}:j,j;
fj · fj′ · g(j) · g(j′) · Yj · Yj′


= E


∑

j∈[n]\{a}
f2j · Y2

j

 =
∑

j∈[n]\{a}
f2j · E

[
Y2
j

]
Note that for every j , a,

E
[
Y2
j

]
= E

[
Yj
]
= Pr [h(j) = h(a)] =

1

k
.

Therefore

E
[
Z2

]
=

∑
j∈[n]\{a} f

2
j

k
≤
∥f∥22
k
.
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Var [X] = Var [Z] = E
[
Z2

]
− (E [Z])2 ≤

∥f∥22
k
.

By Chebyshev,

Pr
[���̂fa − fa��� ≥ ε ∥f∥2

]
≤ 1

kε2
=

1

3
.

We can then use Median trick to boost the algorithm so that

▶ Pr
[���̂fa − fa��� ≥ ε ∥f∥2

]
≤ δ ;

▶ it costs O
(
1
ε2 log

1
δ (logm+ log n)

)
bits of memeory.

Compare the performance (in terms of accuracy and space consumption) of Misra-Gries
and Count Sketch (Exercise).
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