
Algorithms for Big Data (III)

Chihao Zhang

Shanghai Jiao Tong University

Sept. 29, 2019

Algorithms for Big Data (III) 1/16

Review of the Last Lecture

Last time, we proved a few useful concentration inequalities.

We introduced the notion of universal families of Hash functions.

We constructed a 2-universal universal family of Hash functions.

Algorithms for Big Data (III) 2/16

Review of the Last Lecture

Last time, we proved a few useful concentration inequalities.

We introduced the notion of universal families of Hash functions.

We constructed a 2-universal universal family of Hash functions.

Algorithms for Big Data (III) 2/16

Review of the Last Lecture

Last time, we proved a few useful concentration inequalities.

We introduced the notion of universal families of Hash functions.

We constructed a 2-universal universal family of Hash functions.

Algorithms for Big Data (III) 2/16

Review of the Last Lecture

Last time, we proved a few useful concentration inequalities.

We introduced the notion of universal families of Hash functions.

We constructed a 2-universal universal family of Hash functions.

Algorithms for Big Data (III) 2/16

Review: the construction
Let m, n be two integer and p ≥ m be a prime.

The family
H =

{
ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1} ,

where each ha,b : [m]→ [n] is defined as

ha,b(x) = (ax+ b mod p) mod n.

We proved that for every x , y,

Prh∈H [h(x) = h(y)] ≤ 1

n
.

SoH is a 2-universal Hash function family.

Algorithms for Big Data (III) 3/16

Review: the construction
Let m, n be two integer and p ≥ m be a prime.

The family
H =

{
ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1} ,

where each ha,b : [m]→ [n] is defined as

ha,b(x) = (ax+ b mod p) mod n.

We proved that for every x , y,

Prh∈H [h(x) = h(y)] ≤ 1

n
.

SoH is a 2-universal Hash function family.

Algorithms for Big Data (III) 3/16

Review: the construction
Let m, n be two integer and p ≥ m be a prime.

The family
H =

{
ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1} ,

where each ha,b : [m]→ [n] is defined as

ha,b(x) = (ax+ b mod p) mod n.

We proved that for every x , y,

Prh∈H [h(x) = h(y)] ≤ 1

n
.

SoH is a 2-universal Hash function family.

Algorithms for Big Data (III) 3/16

Review: the construction
Let m, n be two integer and p ≥ m be a prime.

The family
H =

{
ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1} ,

where each ha,b : [m]→ [n] is defined as

ha,b(x) = (ax+ b mod p) mod n.

We proved that for every x , y,

Prh∈H [h(x) = h(y)] ≤ 1

n
.

SoH is a 2-universal Hash function family.

Algorithms for Big Data (III) 3/16

Strongly 2-Universal Hash Family

Recall that if we further require that for any u, v,

Prh∈H [h(x) = u ∧ h(y) = v] =
1

n2
,

thenH is called strongly 2-universal family of Hash functions.

When m = n = p are primes, the we can modify the previously constructedH to get a
strong 2-universal family.

In this case, we have

H =
{
ha,b(x) = ax+ b mod p : 0 ≤ a, b ≤ p − 1} .

Algorithms for Big Data (III) 4/16

Strongly 2-Universal Hash Family

Recall that if we further require that for any u, v,

Prh∈H [h(x) = u ∧ h(y) = v] =
1

n2
,

thenH is called strongly 2-universal family of Hash functions.

When m = n = p are primes, the we can modify the previously constructedH to get a
strong 2-universal family.

In this case, we have

H =
{
ha,b(x) = ax+ b mod p : 0 ≤ a, b ≤ p − 1} .

Algorithms for Big Data (III) 4/16

Strongly 2-Universal Hash Family

Recall that if we further require that for any u, v,

Prh∈H [h(x) = u ∧ h(y) = v] =
1

n2
,

thenH is called strongly 2-universal family of Hash functions.

When m = n = p are primes, the we can modify the previously constructedH to get a
strong 2-universal family.

In this case, we have

H =
{
ha,b(x) = ax+ b mod p : 0 ≤ a, b ≤ p − 1} .

Algorithms for Big Data (III) 4/16

Strongly 2-Universal Hash Family

Recall that if we further require that for any u, v,

Prh∈H [h(x) = u ∧ h(y) = v] =
1

n2
,

thenH is called strongly 2-universal family of Hash functions.

When m = n = p are primes, the we can modify the previously constructedH to get a
strong 2-universal family.

In this case, we have

H =
{
ha,b(x) = ax+ b mod p : 0 ≤ a, b ≤ p − 1} .

Algorithms for Big Data (III) 4/16

Proof

Lemma
The equation ax+ b = 0 mod p has unique solution (in Fp) if a , 0 and p is a prime.

The equations ha,b(x1) = y1 and ha,b(x2) = y2 are equivalent to

ax1 + b = y1 mod p, ax2 + b = y2 mod p.

They have a unique solution

a =
y2 − y1
x2 − x1

mod p, b = y1 − ax1 mod p.

Therefore,

Prha,b∈H [ha,b(x1) = y1 ∧ ha,b(x2) = y2] =
1

p2
.

Algorithms for Big Data (III) 5/16

Proof

Lemma
The equation ax+ b = 0 mod p has unique solution (in Fp) if a , 0 and p is a prime.

The equations ha,b(x1) = y1 and ha,b(x2) = y2 are equivalent to

ax1 + b = y1 mod p, ax2 + b = y2 mod p.

They have a unique solution

a =
y2 − y1
x2 − x1

mod p, b = y1 − ax1 mod p.

Therefore,

Prha,b∈H [ha,b(x1) = y1 ∧ ha,b(x2) = y2] =
1

p2
.

Algorithms for Big Data (III) 5/16

Proof

Lemma
The equation ax+ b = 0 mod p has unique solution (in Fp) if a , 0 and p is a prime.

The equations ha,b(x1) = y1 and ha,b(x2) = y2 are equivalent to

ax1 + b = y1 mod p, ax2 + b = y2 mod p.

They have a unique solution

a =
y2 − y1
x2 − x1

mod p, b = y1 − ax1 mod p.

Therefore,

Prha,b∈H [ha,b(x1) = y1 ∧ ha,b(x2) = y2] =
1

p2
.

Algorithms for Big Data (III) 5/16

Proof

Lemma
The equation ax+ b = 0 mod p has unique solution (in Fp) if a , 0 and p is a prime.

The equations ha,b(x1) = y1 and ha,b(x2) = y2 are equivalent to

ax1 + b = y1 mod p, ax2 + b = y2 mod p.

They have a unique solution

a =
y2 − y1
x2 − x1

mod p, b = y1 − ax1 mod p.

Therefore,

Prha,b∈H [ha,b(x1) = y1 ∧ ha,b(x2) = y2] =
1

p2
.

Algorithms for Big Data (III) 5/16

Proof

Lemma
The equation ax+ b = 0 mod p has unique solution (in Fp) if a , 0 and p is a prime.

The equations ha,b(x1) = y1 and ha,b(x2) = y2 are equivalent to

ax1 + b = y1 mod p, ax2 + b = y2 mod p.

They have a unique solution

a =
y2 − y1
x2 − x1

mod p, b = y1 − ax1 mod p.

Therefore,

Prha,b∈H [ha,b(x1) = y1 ∧ ha,b(x2) = y2] =
1

p2
.

Algorithms for Big Data (III) 5/16

The General Case

The Hash family we just constructed has the restriction that m = n

We can naturally generalize m = p to m = pk.

Write every number x in base p:

x = x0 + x1 · p+ x2 · p2 + . . . xk−1 · pk−1.

For every ā = (a0, a1, . . . , ak−1), with 0 ≤ ai ≤ p − 1 and 0 ≤ b ≤ p − 1, define

hā,b(x) = *,
k−1∑
i=0

aixi + b+- mod p.

Then
H =

{
hā,b : 0 ≤ ai ≤ p − 1, 0 ≤ b ≤ p − 1} .

Algorithms for Big Data (III) 6/16

The General Case
The Hash family we just constructed has the restriction that m = n

We can naturally generalize m = p to m = pk.

Write every number x in base p:

x = x0 + x1 · p+ x2 · p2 + . . . xk−1 · pk−1.

For every ā = (a0, a1, . . . , ak−1), with 0 ≤ ai ≤ p − 1 and 0 ≤ b ≤ p − 1, define

hā,b(x) = *,
k−1∑
i=0

aixi + b+- mod p.

Then
H =

{
hā,b : 0 ≤ ai ≤ p − 1, 0 ≤ b ≤ p − 1} .

Algorithms for Big Data (III) 6/16

The General Case
The Hash family we just constructed has the restriction that m = n

We can naturally generalize m = p to m = pk.

Write every number x in base p:

x = x0 + x1 · p+ x2 · p2 + . . . xk−1 · pk−1.

For every ā = (a0, a1, . . . , ak−1), with 0 ≤ ai ≤ p − 1 and 0 ≤ b ≤ p − 1, define

hā,b(x) = *,
k−1∑
i=0

aixi + b+- mod p.

Then
H =

{
hā,b : 0 ≤ ai ≤ p − 1, 0 ≤ b ≤ p − 1} .

Algorithms for Big Data (III) 6/16

The General Case
The Hash family we just constructed has the restriction that m = n

We can naturally generalize m = p to m = pk.

Write every number x in base p:

x = x0 + x1 · p+ x2 · p2 + . . . xk−1 · pk−1.

For every ā = (a0, a1, . . . , ak−1), with 0 ≤ ai ≤ p − 1 and 0 ≤ b ≤ p − 1, define

hā,b(x) = *,
k−1∑
i=0

aixi + b+- mod p.

Then
H =

{
hā,b : 0 ≤ ai ≤ p − 1, 0 ≤ b ≤ p − 1} .

Algorithms for Big Data (III) 6/16

The General Case
The Hash family we just constructed has the restriction that m = n

We can naturally generalize m = p to m = pk.

Write every number x in base p:

x = x0 + x1 · p+ x2 · p2 + . . . xk−1 · pk−1.

For every ā = (a0, a1, . . . , ak−1), with 0 ≤ ai ≤ p − 1 and 0 ≤ b ≤ p − 1, define

hā,b(x) = *,
k−1∑
i=0

aixi + b+- mod p.

Then
H =

{
hā,b : 0 ≤ ai ≤ p − 1, 0 ≤ b ≤ p − 1} .

Algorithms for Big Data (III) 6/16

The General Case
The Hash family we just constructed has the restriction that m = n

We can naturally generalize m = p to m = pk.

Write every number x in base p:

x = x0 + x1 · p+ x2 · p2 + . . . xk−1 · pk−1.

For every ā = (a0, a1, . . . , ak−1), with 0 ≤ ai ≤ p − 1 and 0 ≤ b ≤ p − 1, define

hā,b(x) = *,
k−1∑
i=0

aixi + b+- mod p.

Then
H =

{
hā,b : 0 ≤ ai ≤ p − 1, 0 ≤ b ≤ p − 1} .

Algorithms for Big Data (III) 6/16

Proof

Assuming x , y and they differ on the position i (xi , yi).

For every u, v ∈ {0, 1, . . . , p − 1}, we have equations

aixi + b =

(
u −∑j,i ajxj

)
mod p

aiyi + b =
(
v −∑j,i ajyj

)
mod p

For fixed x, y, u, v and
{
aj
}
j,i
, a unique pair (ai, b) (out of p2 pairs) is determined.

Therefore,

Prhā,b∈H [hā,b(x) = u ∧ hā,b(y) = v] =
1

p2
.

Algorithms for Big Data (III) 7/16

Proof

Assuming x , y and they differ on the position i (xi , yi).

For every u, v ∈ {0, 1, . . . , p − 1}, we have equations

aixi + b =

(
u −∑j,i ajxj

)
mod p

aiyi + b =
(
v −∑j,i ajyj

)
mod p

For fixed x, y, u, v and
{
aj
}
j,i
, a unique pair (ai, b) (out of p2 pairs) is determined.

Therefore,

Prhā,b∈H [hā,b(x) = u ∧ hā,b(y) = v] =
1

p2
.

Algorithms for Big Data (III) 7/16

Proof

Assuming x , y and they differ on the position i (xi , yi).

For every u, v ∈ {0, 1, . . . , p − 1}, we have equations

aixi + b =

(
u −∑j,i ajxj

)
mod p

aiyi + b =
(
v −∑j,i ajyj

)
mod p

For fixed x, y, u, v and
{
aj
}
j,i
, a unique pair (ai, b) (out of p2 pairs) is determined.

Therefore,

Prhā,b∈H [hā,b(x) = u ∧ hā,b(y) = v] =
1

p2
.

Algorithms for Big Data (III) 7/16

Proof

Assuming x , y and they differ on the position i (xi , yi).

For every u, v ∈ {0, 1, . . . , p − 1}, we have equations

aixi + b =

(
u −∑j,i ajxj

)
mod p

aiyi + b =
(
v −∑j,i ajyj

)
mod p

For fixed x, y, u, v and
{
aj
}
j,i
, a unique pair (ai, b) (out of p2 pairs) is determined.

Therefore,

Prhā,b∈H [hā,b(x) = u ∧ hā,b(y) = v] =
1

p2
.

Algorithms for Big Data (III) 7/16

Counting Distinct Elements

Back to the streaming model, we are given a sequence of numbers ⟨a1, . . . , am⟩ where
each ai ∈ [n].

It defines a frequency vector f = (f1, . . . , fn) where fi = ��{k ∈ [m] : ak = i
}��.

We want to compute the number d = ��{i ∈ [n] : fi > 0
}��.

The value d is the number of distinct elements in the stream.

Algorithms for Big Data (III) 8/16

Counting Distinct Elements

Back to the streaming model, we are given a sequence of numbers ⟨a1, . . . , am⟩ where
each ai ∈ [n].

It defines a frequency vector f = (f1, . . . , fn) where fi = ��{k ∈ [m] : ak = i
}��.

We want to compute the number d = ��{i ∈ [n] : fi > 0
}��.

The value d is the number of distinct elements in the stream.

Algorithms for Big Data (III) 8/16

Counting Distinct Elements

Back to the streaming model, we are given a sequence of numbers ⟨a1, . . . , am⟩ where
each ai ∈ [n].

It defines a frequency vector f = (f1, . . . , fn) where fi = ��{k ∈ [m] : ak = i
}��.

We want to compute the number d = ��{i ∈ [n] : fi > 0
}��.

The value d is the number of distinct elements in the stream.

Algorithms for Big Data (III) 8/16

Counting Distinct Elements

Back to the streaming model, we are given a sequence of numbers ⟨a1, . . . , am⟩ where
each ai ∈ [n].

It defines a frequency vector f = (f1, . . . , fn) where fi = ��{k ∈ [m] : ak = i
}��.

We want to compute the number d = ��{i ∈ [n] : fi > 0
}��.

The value d is the number of distinct elements in the stream.

Algorithms for Big Data (III) 8/16

Counting Distinct Elements

Back to the streaming model, we are given a sequence of numbers ⟨a1, . . . , am⟩ where
each ai ∈ [n].

It defines a frequency vector f = (f1, . . . , fn) where fi = ��{k ∈ [m] : ak = i
}��.

We want to compute the number d = ��{i ∈ [n] : fi > 0
}��.

The value d is the number of distinct elements in the stream.

Algorithms for Big Data (III) 8/16

The AMS Algorithm

The algorithm is named after Alon, Matias and Szegedy.

For every integer p > 0, we use zero(p) to denote number of trailing zeros of p in binary.

zero(p) ≜ max
{
i : 2i divides p

}
.

Algorithms for Big Data (III) 9/16

The AMS Algorithm

The algorithm is named after Alon, Matias and Szegedy.

For every integer p > 0, we use zero(p) to denote number of trailing zeros of p in binary.

zero(p) ≜ max
{
i : 2i divides p

}
.

Algorithms for Big Data (III) 9/16

The AMS Algorithm

The algorithm is named after Alon, Matias and Szegedy.

For every integer p > 0, we use zero(p) to denote number of trailing zeros of p in binary.

zero(p) ≜ max
{
i : 2i divides p

}
.

Algorithms for Big Data (III) 9/16

Algorithm AMS Algorithm for Counting Distinct Elements
Init:
A random Hash function h : [n]→ [n] from a 2-universal family
Z← 0

On Input y:
if zero(h(y)) > Z then

Z← zero(h(y))
end if
Output:
d̂ = 2Z+

1
2 .

Algorithms for Big Data (III) 10/16

Intuition

After applying the Hash function, h(y) is uniform is [n].

The probability that it has more than t trailing zeros is at most 2−t.

Therefore, at least in expectation, if we have d distinct numbers, one of them may have
log2 d trailing zeros.

We now turn this intuition into a rigorous proof.

Algorithms for Big Data (III) 11/16

Intuition

After applying the Hash function, h(y) is uniform is [n].

The probability that it has more than t trailing zeros is at most 2−t.

Therefore, at least in expectation, if we have d distinct numbers, one of them may have
log2 d trailing zeros.

We now turn this intuition into a rigorous proof.

Algorithms for Big Data (III) 11/16

Intuition

After applying the Hash function, h(y) is uniform is [n].

The probability that it has more than t trailing zeros is at most 2−t

.

Therefore, at least in expectation, if we have d distinct numbers, one of them may have
log2 d trailing zeros.

We now turn this intuition into a rigorous proof.

Algorithms for Big Data (III) 11/16

Intuition

After applying the Hash function, h(y) is uniform is [n].

The probability that it has more than t trailing zeros is at most 2−t.

Therefore, at least in expectation, if we have d distinct numbers, one of them may have
log2 d trailing zeros.

We now turn this intuition into a rigorous proof.

Algorithms for Big Data (III) 11/16

Intuition

After applying the Hash function, h(y) is uniform is [n].

The probability that it has more than t trailing zeros is at most 2−t.

Therefore, at least in expectation, if we have d distinct numbers, one of them may have
log2 d trailing zeros.

We now turn this intuition into a rigorous proof.

Algorithms for Big Data (III) 11/16

For every 0 ≤ r ≤ n, we use a random variable Yr to denote the number of h(ai) with
trailing zero at least r.

The sequence of variables {Yr}0≤r≤n determines the variable Z since Z = maxr {Yr > 0}.

This motivates us to understand the behavior of Yr.

For every k ∈ [n], we denote Xk,r as the indicator that h(k) has at least r trailing zeros,
then Yr =

∑
k∈[n]:fk>0 Xk,r.

Using this decomposition, it is not hard to see that E [Yr] =
d
2r and Var [Yr] ≤ d

2r .

Algorithms for Big Data (III) 12/16

For every 0 ≤ r ≤ n, we use a random variable Yr to denote the number of h(ai) with
trailing zero at least r.

The sequence of variables {Yr}0≤r≤n determines the variable Z since Z = maxr {Yr > 0}.

This motivates us to understand the behavior of Yr.

For every k ∈ [n], we denote Xk,r as the indicator that h(k) has at least r trailing zeros,
then Yr =

∑
k∈[n]:fk>0 Xk,r.

Using this decomposition, it is not hard to see that E [Yr] =
d
2r and Var [Yr] ≤ d

2r .

Algorithms for Big Data (III) 12/16

For every 0 ≤ r ≤ n, we use a random variable Yr to denote the number of h(ai) with
trailing zero at least r.

The sequence of variables {Yr}0≤r≤n determines the variable Z since Z = maxr {Yr > 0}.

This motivates us to understand the behavior of Yr.

For every k ∈ [n], we denote Xk,r as the indicator that h(k) has at least r trailing zeros,
then Yr =

∑
k∈[n]:fk>0 Xk,r.

Using this decomposition, it is not hard to see that E [Yr] =
d
2r and Var [Yr] ≤ d

2r .

Algorithms for Big Data (III) 12/16

For every 0 ≤ r ≤ n, we use a random variable Yr to denote the number of h(ai) with
trailing zero at least r.

The sequence of variables {Yr}0≤r≤n determines the variable Z since Z = maxr {Yr > 0}.

This motivates us to understand the behavior of Yr.

For every k ∈ [n], we denote Xk,r as the indicator that h(k) has at least r trailing zeros,
then Yr =

∑
k∈[n]:fk>0 Xk,r.

Using this decomposition, it is not hard to see that E [Yr] =
d
2r and Var [Yr] ≤ d

2r .

Algorithms for Big Data (III) 12/16

For every 0 ≤ r ≤ n, we use a random variable Yr to denote the number of h(ai) with
trailing zero at least r.

The sequence of variables {Yr}0≤r≤n determines the variable Z since Z = maxr {Yr > 0}.

This motivates us to understand the behavior of Yr.

For every k ∈ [n], we denote Xk,r as the indicator that h(k) has at least r trailing zeros,
then Yr =

∑
k∈[n]:fk>0 Xk,r.

Using this decomposition, it is not hard to see that E [Yr] =
d
2r and Var [Yr] ≤ d

2r .

Algorithms for Big Data (III) 12/16

Applying Markov’s inequality, we obtain

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr] =
d
2r
.

Applying Chebyshev’s inequality, we obtain

Pr [Yr = 0] ≤ Pr
[��Yr − E [Yr]�� ≥ d

2r

]
≤ 2r

d
.

We know that Yr > 0 for all r ≤ Z and Yr = 0 for all r > Z.

Therefore, Z cannot be too far from log2 d:
▶ if Z ≪ log2 d, we can find a small r with Yr = 0, which happens with small
probability;

▶ if Z ≫ log2 d, we can find a big r with Yr > 0, which happens with small probability.

Algorithms for Big Data (III) 13/16

Applying Markov’s inequality, we obtain

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr] =
d
2r
.

Applying Chebyshev’s inequality, we obtain

Pr [Yr = 0] ≤ Pr
[��Yr − E [Yr]�� ≥ d

2r

]
≤ 2r

d
.

We know that Yr > 0 for all r ≤ Z and Yr = 0 for all r > Z.

Therefore, Z cannot be too far from log2 d:
▶ if Z ≪ log2 d, we can find a small r with Yr = 0, which happens with small
probability;

▶ if Z ≫ log2 d, we can find a big r with Yr > 0, which happens with small probability.

Algorithms for Big Data (III) 13/16

Applying Markov’s inequality, we obtain

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr] =
d
2r
.

Applying Chebyshev’s inequality, we obtain

Pr [Yr = 0] ≤ Pr
[��Yr − E [Yr]�� ≥ d

2r

]
≤ 2r

d
.

We know that Yr > 0 for all r ≤ Z and Yr = 0 for all r > Z.

Therefore, Z cannot be too far from log2 d:
▶ if Z ≪ log2 d, we can find a small r with Yr = 0, which happens with small
probability;

▶ if Z ≫ log2 d, we can find a big r with Yr > 0, which happens with small probability.

Algorithms for Big Data (III) 13/16

Applying Markov’s inequality, we obtain

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr] =
d
2r
.

Applying Chebyshev’s inequality, we obtain

Pr [Yr = 0] ≤ Pr
[��Yr − E [Yr]�� ≥ d

2r

]
≤ 2r

d
.

We know that Yr > 0 for all r ≤ Z and Yr = 0 for all r > Z.

Therefore, Z cannot be too far from log2 d:

▶ if Z ≪ log2 d, we can find a small r with Yr = 0, which happens with small
probability;

▶ if Z ≫ log2 d, we can find a big r with Yr > 0, which happens with small probability.

Algorithms for Big Data (III) 13/16

Applying Markov’s inequality, we obtain

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr] =
d
2r
.

Applying Chebyshev’s inequality, we obtain

Pr [Yr = 0] ≤ Pr
[��Yr − E [Yr]�� ≥ d

2r

]
≤ 2r

d
.

We know that Yr > 0 for all r ≤ Z and Yr = 0 for all r > Z.

Therefore, Z cannot be too far from log2 d:
▶ if Z ≪ log2 d, we can find a small r with Yr = 0, which happens with small
probability;

▶ if Z ≫ log2 d, we can find a big r with Yr > 0, which happens with small probability.

Algorithms for Big Data (III) 13/16

Applying Markov’s inequality, we obtain

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E [Yr] =
d
2r
.

Applying Chebyshev’s inequality, we obtain

Pr [Yr = 0] ≤ Pr
[��Yr − E [Yr]�� ≥ d

2r

]
≤ 2r

d
.

We know that Yr > 0 for all r ≤ Z and Yr = 0 for all r > Z.

Therefore, Z cannot be too far from log2 d:
▶ if Z ≪ log2 d, we can find a small r with Yr = 0, which happens with small
probability;

▶ if Z ≫ log2 d, we can find a big r with Yr > 0, which happens with small probability.

Algorithms for Big Data (III) 13/16

If d̂ ≤ d
3 , let r be the largest integer with 2r+

1
2 ≤ d

3 .

Pr
[̂
d ≤ d

3

]
= Pr [Z ≤ r] = Pr [Yr+1 = 0] ≤ 2r+1

d
≤
√
2

3
.

If d̂ ≥ 3d, let r be the smallest integer with 2r+
1
2 ≥ 3d.

Pr
[̂
d ≥ 3d

]
= Pr [Z ≥ r] = Pr [Yr > 0] ≤ d

2r
≤
√
2

3
.

The algorithm costs O(log n) bits of memory.

Algorithms for Big Data (III) 14/16

If d̂ ≤ d
3 , let r be the largest integer with 2r+

1
2 ≤ d

3 .

Pr
[̂
d ≤ d

3

]
= Pr [Z ≤ r] = Pr [Yr+1 = 0] ≤ 2r+1

d
≤
√
2

3
.

If d̂ ≥ 3d, let r be the smallest integer with 2r+
1
2 ≥ 3d.

Pr
[̂
d ≥ 3d

]
= Pr [Z ≥ r] = Pr [Yr > 0] ≤ d

2r
≤
√
2

3
.

The algorithm costs O(log n) bits of memory.

Algorithms for Big Data (III) 14/16

If d̂ ≤ d
3 , let r be the largest integer with 2r+

1
2 ≤ d

3 .

Pr
[̂
d ≤ d

3

]
= Pr [Z ≤ r] = Pr [Yr+1 = 0] ≤ 2r+1

d
≤
√
2

3
.

If d̂ ≥ 3d, let r be the smallest integer with 2r+
1
2 ≥ 3d.

Pr
[̂
d ≥ 3d

]
= Pr [Z ≥ r] = Pr [Yr > 0] ≤ d

2r
≤
√
2

3
.

The algorithm costs O(log n) bits of memory.

Algorithms for Big Data (III) 14/16

If d̂ ≤ d
3 , let r be the largest integer with 2r+

1
2 ≤ d

3 .

Pr
[̂
d ≤ d

3

]
= Pr [Z ≤ r] = Pr [Yr+1 = 0] ≤ 2r+1

d
≤
√
2

3
.

If d̂ ≥ 3d, let r be the smallest integer with 2r+
1
2 ≥ 3d.

Pr
[̂
d ≥ 3d

]
= Pr [Z ≥ r] = Pr [Yr > 0] ≤ d

2r
≤
√
2

3
.

The algorithm costs O(log n) bits of memory.

Algorithms for Big Data (III) 14/16

If d̂ ≤ d
3 , let r be the largest integer with 2r+

1
2 ≤ d

3 .

Pr
[̂
d ≤ d

3

]
= Pr [Z ≤ r] = Pr [Yr+1 = 0] ≤ 2r+1

d
≤
√
2

3
.

If d̂ ≥ 3d, let r be the smallest integer with 2r+
1
2 ≥ 3d.

Pr
[̂
d ≥ 3d

]
= Pr [Z ≥ r] = Pr [Yr > 0] ≤ d

2r
≤
√
2

3
.

The algorithm costs O(log n) bits of memory.

Algorithms for Big Data (III) 14/16

Median

We can apply the standard Median trick to the AMS algorithm. (Excercise)

Using O(log 1
δ log n) bits of memory, we can obtain

Pr
[
d
3
≤ d̂ ≤ 3d

]
≥ 1 − δ .

Algorithms for Big Data (III) 15/16

Median

We can apply the standard Median trick to the AMS algorithm. (Excercise)

Using O(log 1
δ log n) bits of memory, we can obtain

Pr
[
d
3
≤ d̂ ≤ 3d

]
≥ 1 − δ .

Algorithms for Big Data (III) 15/16

Median

We can apply the standard Median trick to the AMS algorithm. (Excercise)

Using O(log 1
δ log n) bits of memory, we can obtain

Pr
[
d
3
≤ d̂ ≤ 3d

]
≥ 1 − δ .

Algorithms for Big Data (III) 15/16

The BJKST Algorithm
The following improvement of AMS is due to Bar-Yossef, Jayram, Kumar, Sivakumar and
Trevisan.

Algorithm BJKST Algorithm for Counting Distinct Elements

Init: Random Hash functions h : [n] → [n], g : [n] → [bε−4 log2 n], both from 2-
universal families; Z← 0, B← ∅
On Input y:
if zero(h(y)) ≥ Z then

B← B ∪ {(g(y), zeros(h(y)))}
while |B| ≥ c/ε2 do

Z← Z+ 1
Remove all (α , β) with β < Z from B

end while
end if
Output: d̂ = |B| 2Z

Algorithms for Big Data (III) 16/16

