Algorithms for Big Data (IlI)

Chihao Zhang

Shanghai Jiao Tong University

Sept. 29, 2019

Algorithms for Big Data (Ill)

116

REVIEW OF THE LAST LECTURE

Last time, we proved a few useful concentration inequalities.

We introduced the notion of universal families of Hash functions.

We constructed a 2-universal universal family of Hash functions.

Algorithms for Big Data (Ill)

REVIEW: THE CONSTRUCTION

Let m, n be two integer and p > m be a prime.

The family
H =1{hyp:1<a<p-1,0<b<p-1},

where each h, , : [m] — [n] is defined as

hap(x) = (ax+b mod p) mod n.

We proved that for every x # y,

Prics [h(x) = h(y)] < .

So H is a 2-universal Hash function family.

Algorithms for Big Data (Ill)

STRONGLY 2-UNIVERSAL HAsH FAMILY

Recall that if we further require that for any u, v,
Prycs [h(x) = unh(y) =] = =
then H is called strongly 2-universal family of Hash functions.

When m = n = p are primes, the we can modify the previously constructed H to get a
strong 2-universal family.

In this case, we have

H = {hgp(x) =ax+b modp:0<ab<p-1}.

Algorithms for Big Data (Ill

Proor

Lemma
The equation ax+ b= 0 mod p has unique solution (in F,) if a # 0 and p is a prime.

The equations h, p(x1) = y1 and hg p(x2) = y2 are equivalent to
axi +b=y; modp, axx+b=ys modp.

They have a unique solution

a=2"" hod p, b=y —axq mod p.
X2 — X]
Therefore,
1
Prp, e [has(x1) = y1 A hap(x2) = y2] = .

p

Algorithms for Big Data (Ill

THE GENERAL CASE

The Hash family we just constructed has the restriction that m = n
We can naturally generalize m = p to m = pk.
Write every number x in base p:

X=X0+X1'P+X2‘P2+.--Xk—1‘Pk_1-

For every a = (ag,ay, ..., ak-1), with0 < g < p—1and 0 < b < p—1, define
k-1
ha p(x) = (Z aixi + b) mod p.
i=0
Then

H =1{hzp:0<a<p-1,0<b<p-1}.

Algorithms for Big Data (Ill

Proor

Assuming x # y and they differ on the position i (x; # y;).
For every u,ve {0,1,...,p— 1}, we have equations

{a,-x,- + b= (u— Z#,-ajxj) mod p
aiyi+ b= (v— Z#,-ajyj) mod p

For fixed x, y, u, vand {aj}#i, a unique pair (a;, b) (out of p? pairs) is determined.
Therefore,

1
Pry, eq [has(x) = u A hyp(y) = v = =

Algorithms for Big Data (Ill

CoOUNTING DisTINCT ELEMENTS

Back to the streaming model, we are given a sequence of numbers {ay, . .., an) where

each a; € [n].
It defines a frequency vector f = (fi, ..., f,) where f; = |[{k € [m] : a, = i}].
We want to compute the number d = |{i € [n] : f; > 0}].

The value dis the number of distinct elements in the stream.

Algorithms for Big Data (Ill

THE AMS ALGORITHM

The algorithm is named after Alon, Matias and Szegedy.
For every integer p > 0, we use zero(p) to denote number of trailing zeros of p in binary.

zero(p) = max {i : 2 divides p} .

Algorithms for Big Data (Ill)

Algorithm AMS Algorithm for Counting Distinct Elements
Init:
A random Hash function h : [n] — [n] from a 2-universal family
Z<0

On Input y:

if zero(h(y)) > Z then
Z « zero(h(y))

end if

Output:
d=27t3.

Algorithms for Big Data (1ll) 10/16

INTUITION

After applying the Hash function, h(y) is uniform is [n].
The probability that it has more than t trailing zeros is at most 27"

Therefore, at least in expectation, if we have d distinct numbers, one of them may have
log, d trailing zeros.

We now turn this intuition into a rigorous proof.

Algorithms for Big Data (1ll) /16

For every 0 < r < n, we use a random variable Y, to denote the number of h(q;) with
trailing zero at least r.

The sequence of variables {Y;}y<,<, determines the variable Zsince Z= max,{Y;, > 0}.
This motivates us to understand the behavior of Y.

For every k € [n], we denote X , as the indicator that h(k) has at least r trailing zeros,
then Y, = Zke[n]:fk>0 Xir

Using this decomposition, it is not hard to see that E[Y,] = £ and Var [Y,] < £.

Algorithms for Big Data (1ll) 12/16

Applying Markov’s inequality, we obtain
d
Pr[Y,>0]=Pr[Y,>1] <E[Y,] = >

Applying Chebyshev’s inequality, we obtain

d
Y.—E[Y] > —

2r

Pr[Y,=0] <Pr

We know that Y, > 0 forall r< Zand Y, =0forall r> Z

Therefore, Z cannot be too far from log, d:

» if Z< log, d, we can find a small r with Y, = 0, which happens with small

probability;

» if Z> log, d, we can find a big r with Y, > 0, which happens with small probability.

<.
d

Algorithms for Big Data (1ll)

13/16

Ifd < g, let r be the largest integer with 23 < g.

~ d
Pr [ds g] =Pr[Z<r=Pr[Yq1=0]<
If d > 3d, let r be the smallest integer with 23 > 3d.

Pr[az 3d] =Pr[Z=r=Pr[Y,>0] <

The algorithm costs O(log n) bits of memory.

Algorithms for Big Data (1ll)

14/16

MEDIAN

We can apply the standard Median trick to the AMS algorithm. (Excercise)

Using O(log 3 log n) bits of memory, we can obtain

Pr[gs?!sw] >1-86.

Algorithms for Big Data (1ll) 15/16

THE BJKST ALGORITHM

The following improvement of AMS is due to Bar-Yossef, Jayram, Kumar, Sivakumar and
Trevisan.

Algorithm BJKST Algorithm for Counting Distinct Elements

Init: Random Hash functions h : [n] — [n], g : [n] — [be~*log?® n], both from 2-
universal families; Z < 0, B — @

On Input y:
if zero(h(y)) > Zthen
B — BU {(gly), zeros(h(y))}
while |B| > ¢/¢? do
Z—7Z+1
Remove all (a,) with f < Zfrom B
end while

end if
Output: d= |B| 24

Algorithms for Big Data (1ll) 16/16

