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REVIEW OF THE LAST LECTURE

Last time, we proved a few useful concentration inequalities.

We introduced the notion of universal families of Hash functions.

We constructed a 2-universal universal family of Hash functions.
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REVIEW: THE CONSTRUCTION

Let m, n be two integer and p > m be a prime.

The family
H =1{hyp:1<a<p-1,0<b<p-1},

where each h, , : [m] — [n] is defined as

hap(x) = (ax+b mod p) mod n.

We proved that for every x # y,

Prics [h(x) = h(y)] < .

So H is a 2-universal Hash function family.
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STRONGLY 2-UNIVERSAL HAsH FAMILY

Recall that if we further require that for any u, v,
Prycs [h(x) = unh(y) =] = =
then H is called strongly 2-universal family of Hash functions.

When m = n = p are primes, the we can modify the previously constructed H to get a
strong 2-universal family.

In this case, we have

H = {hgp(x) =ax+b modp:0<ab<p-1}.
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Proor

Lemma
The equation ax+ b= 0 mod p has unique solution (in F,) if a # 0 and p is a prime.

The equations h, p(x1) = y1 and hg p(x2) = y2 are equivalent to
axi +b=y; modp, axx+b=ys modp.

They have a unique solution

a=2"" hod p, b=y —axq mod p.
X2 — X]
Therefore,
1
Prp, e [has(x1) = y1 A hap(x2) = y2] = .

p
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THE GENERAL CASE

The Hash family we just constructed has the restriction that m = n
We can naturally generalize m = p to m = pk.
Write every number x in base p:

X=X0+X1'P+X2‘P2+.--Xk—1‘Pk_1-

For every a = (ag,ay, ..., ak-1), with0 < g < p—1and 0 < b < p—1, define
k-1
ha p(x) = (Z aixi + b) mod p.
i=0
Then

H =1{hzp:0<a<p-1,0<b<p-1}.
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Proor

Assuming x # y and they differ on the position i (x; # y;).
For every u,ve {0,1,...,p— 1}, we have equations

{a,-x,- + b= (u— Z#,-ajxj) mod p
aiyi+ b= (v— Z#,-ajyj) mod p

For fixed x, y, u, vand {aj}#i, a unique pair (a;, b) (out of p? pairs) is determined.
Therefore,

1
Pry, eq [has(x) = u A hyp(y) = v = =
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CoOUNTING DisTINCT ELEMENTS

Back to the streaming model, we are given a sequence of numbers {ay, . .., an) where

each a; € [n].
It defines a frequency vector f = (fi, ..., f,) where f; = |[{k € [m] : a, = i}].
We want to compute the number d = |{i € [n] : f; > 0}].

The value dis the number of distinct elements in the stream.
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THE AMS ALGORITHM

The algorithm is named after Alon, Matias and Szegedy.
For every integer p > 0, we use zero(p) to denote number of trailing zeros of p in binary.

zero(p) = max {i : 2 divides p} .
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Algorithm AMS Algorithm for Counting Distinct Elements
Init:
A random Hash function h : [n] — [n] from a 2-universal family
Z<0

On Input y:

if zero(h(y)) > Z then
Z « zero(h(y))

end if

Output:
d=27t3.
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INTUITION

After applying the Hash function, h(y) is uniform is [n].
The probability that it has more than t trailing zeros is at most 27"

Therefore, at least in expectation, if we have d distinct numbers, one of them may have
log, d trailing zeros.

We now turn this intuition into a rigorous proof.
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For every 0 < r < n, we use a random variable Y, to denote the number of h(q;) with
trailing zero at least r.

The sequence of variables {Y;}y<,<, determines the variable Zsince Z= max,{Y;, > 0}.
This motivates us to understand the behavior of Y.

For every k € [n], we denote X , as the indicator that h(k) has at least r trailing zeros,
then Y, = Zke[n]:fk>0 Xir

Using this decomposition, it is not hard to see that E[Y,] = £ and Var [Y,] < £.
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Applying Markov’s inequality, we obtain
d
Pr[Y,>0]=Pr[Y,>1] <E[Y,] = >

Applying Chebyshev’s inequality, we obtain

d
Y.—E[Y] > —

2r

Pr[Y,=0] <Pr

We know that Y, > 0 forall r< Zand Y, =0forall r> Z

Therefore, Z cannot be too far from log, d:

» if Z< log, d, we can find a small r with Y, = 0, which happens with small

probability;

» if Z> log, d, we can find a big r with Y, > 0, which happens with small probability.

<.
d
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Ifd < g, let r be the largest integer with 23 < g.

~ d
Pr [ds g] =Pr[Z<r=Pr[Yq1=0]<
If d > 3d, let r be the smallest integer with 23 > 3d.

Pr[az 3d] =Pr[Z=r=Pr[Y,>0] <

The algorithm costs O(log n) bits of memory.
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MEDIAN

We can apply the standard Median trick to the AMS algorithm. (Excercise)

Using O(log 3 log n) bits of memory, we can obtain

Pr[gs?!sw] >1-86.
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THE BJKST ALGORITHM

The following improvement of AMS is due to Bar-Yossef, Jayram, Kumar, Sivakumar and
Trevisan.

Algorithm BJKST Algorithm for Counting Distinct Elements

Init: Random Hash functions h : [n] — [n], g : [n] — [be~*log?® n], both from 2-
universal families; Z < 0, B — @

On Input y:
if zero(h(y)) > Zthen
B — BU {(gly), zeros(h(y))}
while |B| > ¢/¢? do
Z—7Z+1
Remove all (a, ) with f < Zfrom B
end while

end if
Output: d= |B| 24
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