
Algorithms for Big Data (II)

Chihao Zhang

Shanghai Jiao Tong University

Sept. 27, 2019

Algorithms for Big Data (II) 1/17

Review of Last Lecture

Last time, we met the streaming model.

We studied Morris’ algorithm for counting the number of elements in a data stream.

We used Averaging trick and Median trick to boost the quality of Morris’ algorithm.

Today we will take a closer look at the mathematical tools needed in the course.

Algorithms for Big Data (II) 2/17

Review of Last Lecture

Last time, we met the streaming model.

We studied Morris’ algorithm for counting the number of elements in a data stream.

We used Averaging trick and Median trick to boost the quality of Morris’ algorithm.

Today we will take a closer look at the mathematical tools needed in the course.

Algorithms for Big Data (II) 2/17

Review of Last Lecture

Last time, we met the streaming model.

We studied Morris’ algorithm for counting the number of elements in a data stream.

We used Averaging trick and Median trick to boost the quality of Morris’ algorithm.

Today we will take a closer look at the mathematical tools needed in the course.

Algorithms for Big Data (II) 2/17

Review of Last Lecture

Last time, we met the streaming model.

We studied Morris’ algorithm for counting the number of elements in a data stream.

We used Averaging trick and Median trick to boost the quality of Morris’ algorithm.

Today we will take a closer look at the mathematical tools needed in the course.

Algorithms for Big Data (II) 2/17

Review of Last Lecture

Last time, we met the streaming model.

We studied Morris’ algorithm for counting the number of elements in a data stream.

We used Averaging trick and Median trick to boost the quality of Morris’ algorithm.

Today we will take a closer look at the mathematical tools needed in the course.

Algorithms for Big Data (II) 2/17

Markov’s Ineqality

Markov’s inequality
For every nonnegative random variable X and every a ≥ 0, it holds that

Pr [X ≥ a] ≤ E [X]
a
.

Proof.

Let 1X≥a be the indicator random variable such that 1X≥a(x) =

{
1, if x ≥ a,

0, otherwise.
Then it holds that X ≥ a · 1X≥a. Take the expecation on both sides, we obtain

E [X] ≥ a · E [1X≥a] = a · Pr [X ≥ a] .

□

Algorithms for Big Data (II) 3/17

Markov’s Ineqality

Markov’s inequality
For every nonnegative random variable X and every a ≥ 0, it holds that

Pr [X ≥ a] ≤ E [X]
a
.

Proof.

Let 1X≥a be the indicator random variable such that 1X≥a(x) =

{
1, if x ≥ a,

0, otherwise.
Then it holds that X ≥ a · 1X≥a. Take the expecation on both sides, we obtain

E [X] ≥ a · E [1X≥a] = a · Pr [X ≥ a] .

□

Algorithms for Big Data (II) 3/17

Markov’s Ineqality

Markov’s inequality
For every nonnegative random variable X and every a ≥ 0, it holds that

Pr [X ≥ a] ≤ E [X]
a
.

Proof.

Let 1X≥a be the indicator random variable such that 1X≥a(x) =

{
1, if x ≥ a,

0, otherwise.
Then it holds that X ≥ a · 1X≥a. Take the expecation on both sides, we obtain

E [X] ≥ a · E [1X≥a] = a · Pr [X ≥ a] .

□

Algorithms for Big Data (II) 3/17

Chebyshev’s Ineqality

Chebyshev’s inequality
For every random variable X and every a ≥ 0, it holds that

Pr [|X − E [X]| ≥ a] ≤ Var [X]
a2

.

Proof.

Pr [|X − E [X]| ≥ a] = Pr
[
(X − E [X])2 ≥ a2

]
≤

E
[
(X − E [X])2

]
a2

(Markov’s inequality)

=
Var [X]

a2
.

□

Algorithms for Big Data (II) 4/17

Chebyshev’s Ineqality
Chebyshev’s inequality
For every random variable X and every a ≥ 0, it holds that

Pr [|X − E [X]| ≥ a] ≤ Var [X]
a2

.

Proof.

Pr [|X − E [X]| ≥ a] = Pr
[
(X − E [X])2 ≥ a2

]
≤

E
[
(X − E [X])2

]
a2

(Markov’s inequality)

=
Var [X]

a2
.

□

Algorithms for Big Data (II) 4/17

Chebyshev’s Ineqality
Chebyshev’s inequality
For every random variable X and every a ≥ 0, it holds that

Pr [|X − E [X]| ≥ a] ≤ Var [X]
a2

.

Proof.

Pr [|X − E [X]| ≥ a] = Pr
[
(X − E [X])2 ≥ a2

]
≤

E
[
(X − E [X])2

]
a2

(Markov’s inequality)

=
Var [X]

a2
.

□
Algorithms for Big Data (II) 4/17

Chernoff’s Bound

Chernoff bound
Let X1, . . . ,Xn be independent Bernoulli trials with E [Xi] = pi for every i = 1, . . . , n. Let
X =

∑n
i=1 Xi. Then for every 0 < ε < 1, it holds that

Pr [|X − E [X]| > ε · E [X]] ≤ 2 exp
(
−ε

2E [X]
3

)
.

The main tool to prove Chernoff bound is the moment generating function etX for a
random variable X.

It holds that

E
[
etX

]
= E

[
et

∑n
i=1 Xi

]
=

n∏
i=1

E
[
etXi

]
=

n∏
i=1

(
(1 − pi) + piet

)
=

∏ (
1 − (1 − et)pi

)
≤

n∏
i=1

e−(1−e
t)pi = e−(1−e

t)E[X].

Algorithms for Big Data (II) 5/17

Chernoff’s Bound
Chernoff bound
Let X1, . . . ,Xn be independent Bernoulli trials with E [Xi] = pi for every i = 1, . . . , n. Let
X =

∑n
i=1 Xi. Then for every 0 < ε < 1, it holds that

Pr [|X − E [X]| > ε · E [X]] ≤ 2 exp
(
−ε

2E [X]
3

)
.

The main tool to prove Chernoff bound is the moment generating function etX for a
random variable X.

It holds that

E
[
etX

]
= E

[
et

∑n
i=1 Xi

]
=

n∏
i=1

E
[
etXi

]
=

n∏
i=1

(
(1 − pi) + piet

)
=

∏ (
1 − (1 − et)pi

)
≤

n∏
i=1

e−(1−e
t)pi = e−(1−e

t)E[X].

Algorithms for Big Data (II) 5/17

Chernoff’s Bound
Chernoff bound
Let X1, . . . ,Xn be independent Bernoulli trials with E [Xi] = pi for every i = 1, . . . , n. Let
X =

∑n
i=1 Xi. Then for every 0 < ε < 1, it holds that

Pr [|X − E [X]| > ε · E [X]] ≤ 2 exp
(
−ε

2E [X]
3

)
.

The main tool to prove Chernoff bound is the moment generating function etX for a
random variable X.

It holds that

E
[
etX

]
= E

[
et

∑n
i=1 Xi

]
=

n∏
i=1

E
[
etXi

]
=

n∏
i=1

(
(1 − pi) + piet

)
=

∏ (
1 − (1 − et)pi

)
≤

n∏
i=1

e−(1−e
t)pi = e−(1−e

t)E[X].

Algorithms for Big Data (II) 5/17

Chernoff’s Bound
Chernoff bound
Let X1, . . . ,Xn be independent Bernoulli trials with E [Xi] = pi for every i = 1, . . . , n. Let
X =

∑n
i=1 Xi. Then for every 0 < ε < 1, it holds that

Pr [|X − E [X]| > ε · E [X]] ≤ 2 exp
(
−ε

2E [X]
3

)
.

The main tool to prove Chernoff bound is the moment generating function etX for a
random variable X.

It holds that

E
[
etX

]
= E

[
et

∑n
i=1 Xi

]
=

n∏
i=1

E
[
etXi

]
=

n∏
i=1

(
(1 − pi) + piet

)
=

∏ (
1 − (1 − et)pi

)
≤

n∏
i=1

e−(1−e
t)pi = e−(1−e

t)E[X].

Algorithms for Big Data (II) 5/17

Proof of Chernoff Bound

For every t > 0, we have

Pr [X ≥ (1 + ε)E [X]] = Pr
[
etX ≥ et(1+ε)E[X]

]
≤

E
[
etX

]
et(1+ε)E[X]

≤ e−(1−e
t)E[X]

et(1+ε)E[X]
.

To find an optimal t, we calculate the derivative of above and obtain for t = log(1 + ε),

Pr [X ≥ (1 + ε)E [X]] ≤
(

eε

(1 + ε)1+ε

)E[X]
≤ e−ε

2E[X]/3.

We can similarly prove that

Pr [X ≤ (1 − ε)E [X]] ≤ e−ε
2E[X]/2.

Combining the bounds for both lower and upper tails, we finish the proof.

Algorithms for Big Data (II) 6/17

Proof of Chernoff Bound
For every t > 0, we have

Pr [X ≥ (1 + ε)E [X]] = Pr
[
etX ≥ et(1+ε)E[X]

]
≤

E
[
etX

]
et(1+ε)E[X]

≤ e−(1−e
t)E[X]

et(1+ε)E[X]
.

To find an optimal t, we calculate the derivative of above and obtain for t = log(1 + ε),

Pr [X ≥ (1 + ε)E [X]] ≤
(

eε

(1 + ε)1+ε

)E[X]
≤ e−ε

2E[X]/3.

We can similarly prove that

Pr [X ≤ (1 − ε)E [X]] ≤ e−ε
2E[X]/2.

Combining the bounds for both lower and upper tails, we finish the proof.

Algorithms for Big Data (II) 6/17

Proof of Chernoff Bound
For every t > 0, we have

Pr [X ≥ (1 + ε)E [X]] = Pr
[
etX ≥ et(1+ε)E[X]

]
≤

E
[
etX

]
et(1+ε)E[X]

≤ e−(1−e
t)E[X]

et(1+ε)E[X]
.

To find an optimal t, we calculate the derivative of above and obtain for t = log(1 + ε),

Pr [X ≥ (1 + ε)E [X]] ≤
(

eε

(1 + ε)1+ε

)E[X]
≤ e−ε

2E[X]/3.

We can similarly prove that

Pr [X ≤ (1 − ε)E [X]] ≤ e−ε
2E[X]/2.

Combining the bounds for both lower and upper tails, we finish the proof.

Algorithms for Big Data (II) 6/17

Proof of Chernoff Bound
For every t > 0, we have

Pr [X ≥ (1 + ε)E [X]] = Pr
[
etX ≥ et(1+ε)E[X]

]
≤

E
[
etX

]
et(1+ε)E[X]

≤ e−(1−e
t)E[X]

et(1+ε)E[X]
.

To find an optimal t, we calculate the derivative of above and obtain for t = log(1 + ε),

Pr [X ≥ (1 + ε)E [X]] ≤
(

eε

(1 + ε)1+ε

)E[X]
≤ e−ε

2E[X]/3.

We can similarly prove that

Pr [X ≤ (1 − ε)E [X]] ≤ e−ε
2E[X]/2.

Combining the bounds for both lower and upper tails, we finish the proof.

Algorithms for Big Data (II) 6/17

Proof of Chernoff Bound
For every t > 0, we have

Pr [X ≥ (1 + ε)E [X]] = Pr
[
etX ≥ et(1+ε)E[X]

]
≤

E
[
etX

]
et(1+ε)E[X]

≤ e−(1−e
t)E[X]

et(1+ε)E[X]
.

To find an optimal t, we calculate the derivative of above and obtain for t = log(1 + ε),

Pr [X ≥ (1 + ε)E [X]] ≤
(

eε

(1 + ε)1+ε

)E[X]
≤ e−ε

2E[X]/3.

We can similarly prove that

Pr [X ≤ (1 − ε)E [X]] ≤ e−ε
2E[X]/2.

Combining the bounds for both lower and upper tails, we finish the proof.
Algorithms for Big Data (II) 6/17

Balls-into-Bins

Balls-into-Bins is a simple yet important probabilistic model.

Suppose we throw m ball into n bins uniformly and independently, what is the
(expected) maxload of the bins?

When m = n, the answer is Θ
(

log n
log log n

)
.

It models an important object, the Hash functions.

Algorithms for Big Data (II) 7/17

Balls-into-Bins

Balls-into-Bins is a simple yet important probabilistic model.

Suppose we throw m ball into n bins uniformly and independently, what is the
(expected) maxload of the bins?

When m = n, the answer is Θ
(

log n
log log n

)
.

It models an important object, the Hash functions.

Algorithms for Big Data (II) 7/17

Balls-into-Bins

Balls-into-Bins is a simple yet important probabilistic model.

Suppose we throw m ball into n bins uniformly and independently, what is the
(expected) maxload of the bins?

When m = n, the answer is Θ
(

log n
log log n

)
.

It models an important object, the Hash functions.

Algorithms for Big Data (II) 7/17

Balls-into-Bins

Balls-into-Bins is a simple yet important probabilistic model.

Suppose we throw m ball into n bins uniformly and independently, what is the
(expected) maxload of the bins?

When m = n, the answer is Θ
(

log n
log log n

)
.

It models an important object, the Hash functions.

Algorithms for Big Data (II) 7/17

Independence

A set of random variables X1, . . . ,Xn are mutually independent if for every index set
I ⊆ [n] and values {xi}i∈I,

Pr

[∧
i∈I

Xi = xi

]
=

n∏
i=1

Pr [Xi = xi] .

Algorithms for Big Data (II) 8/17

Independence

A set of random variables X1, . . . ,Xn are mutually independent if for every index set
I ⊆ [n] and values {xi}i∈I,

Pr

[∧
i∈I

Xi = xi

]
=

n∏
i=1

Pr [Xi = xi] .

Algorithms for Big Data (II) 8/17

Independence

A set of random variables X1, . . . ,Xn are mutually independent if for every index set
I ⊆ [n] and values {xi}i∈I,

Pr

[∧
i∈I

Xi = xi

]
=

n∏
i=1

Pr [Xi = xi] .

Algorithms for Big Data (II) 8/17

k-wise Independence

A weaker notion of independence is the k-wise independence.

A set of random variables X1, . . . ,Xn are k-wise independent if for every index set I ⊆ [n]
with |I| ≤ k and values {xi}i∈I,

Pr

[∧
i∈I

Xi = xi

]
=

n∏
i=1

Pr [Xi = xi] .

We call X1, . . . ,Xn pairwise independent if they are 2-wise independent.

Algorithms for Big Data (II) 9/17

k-wise Independence

A weaker notion of independence is the k-wise independence.

A set of random variables X1, . . . ,Xn are k-wise independent if for every index set I ⊆ [n]
with |I| ≤ k and values {xi}i∈I,

Pr

[∧
i∈I

Xi = xi

]
=

n∏
i=1

Pr [Xi = xi] .

We call X1, . . . ,Xn pairwise independent if they are 2-wise independent.

Algorithms for Big Data (II) 9/17

k-wise Independence

A weaker notion of independence is the k-wise independence.

A set of random variables X1, . . . ,Xn are k-wise independent if for every index set I ⊆ [n]
with |I| ≤ k and values {xi}i∈I,

Pr

[∧
i∈I

Xi = xi

]
=

n∏
i=1

Pr [Xi = xi] .

We call X1, . . . ,Xn pairwise independent if they are 2-wise independent.

Algorithms for Big Data (II) 9/17

k-wise Independence

A weaker notion of independence is the k-wise independence.

A set of random variables X1, . . . ,Xn are k-wise independent if for every index set I ⊆ [n]
with |I| ≤ k and values {xi}i∈I,

Pr

[∧
i∈I

Xi = xi

]
=

n∏
i=1

Pr [Xi = xi] .

We call X1, . . . ,Xn pairwise independent if they are 2-wise independent.

Algorithms for Big Data (II) 9/17

Examples

Suppose we have n independent bits X1, . . . ,Xn ∈ {0, 1}.

For every I ∈ [n], define YI =
(∑

j∈I Xj
)

mod 2.

The random bits {YI}I⊆[n] are pairwise independent.

But they are not mutually independent!

Algorithms for Big Data (II) 10/17

Examples

Suppose we have n independent bits X1, . . . ,Xn ∈ {0, 1}.

For every I ∈ [n], define YI =
(∑

j∈I Xj
)

mod 2.

The random bits {YI}I⊆[n] are pairwise independent.

But they are not mutually independent!

Algorithms for Big Data (II) 10/17

Examples

Suppose we have n independent bits X1, . . . ,Xn ∈ {0, 1}.

For every I ∈ [n], define YI =
(∑

j∈I Xj
)

mod 2.

The random bits {YI}I⊆[n] are pairwise independent.

But they are not mutually independent!

Algorithms for Big Data (II) 10/17

Examples

Suppose we have n independent bits X1, . . . ,Xn ∈ {0, 1}.

For every I ∈ [n], define YI =
(∑

j∈I Xj
)

mod 2.

The random bits {YI}I⊆[n] are pairwise independent.

But they are not mutually independent!

Algorithms for Big Data (II) 10/17

Property of Pairwise Independence

Theorem
For pairwise independent X1, . . . ,Xn, we have

Var [X1 + · · ·+ Xn] = Var [X1] + · · ·+ Var [Xn] .

Proof.

Var [X1 · · ·+ Xn] = E
[
(X1 + · · ·+ Xn)2

]
− (E [X1 + · · ·+ Xn])

2

=
n∑

i=1

E
[
X2i

]
+ 2

∑
1≤i<j≤n

E
[
XiXj

]
−

(
n∑

i=1

E [Xi]
2 + 2

∑
1≤i<j≤n

E [Xi]E
[
Xj

])
=

n∑
i=1

(
E

[
X2i

]
− E [Xi]

2
)
=

n∑
i=1

Var [Xi] .

□

Algorithms for Big Data (II) 11/17

Property of Pairwise Independence
Theorem
For pairwise independent X1, . . . ,Xn, we have

Var [X1 + · · ·+ Xn] = Var [X1] + · · ·+ Var [Xn] .

Proof.

Var [X1 · · ·+ Xn] = E
[
(X1 + · · ·+ Xn)2

]
− (E [X1 + · · ·+ Xn])

2

=
n∑

i=1

E
[
X2i

]
+ 2

∑
1≤i<j≤n

E
[
XiXj

]
−

(
n∑

i=1

E [Xi]
2 + 2

∑
1≤i<j≤n

E [Xi]E
[
Xj

])
=

n∑
i=1

(
E

[
X2i

]
− E [Xi]

2
)
=

n∑
i=1

Var [Xi] .

□
Algorithms for Big Data (II) 11/17

Hash Functions

In Balls-into-Bins, we distribute balls uniformly and independently.

This can be implemented using Hash functions

Hash functions are important data structures that have been widely used in computer
science.

We will contruct Hash functions with theoretical guarantees.

Algorithms for Big Data (II) 12/17

Hash Functions

In Balls-into-Bins, we distribute balls uniformly and independently.

This can be implemented using Hash functions

Hash functions are important data structures that have been widely used in computer
science.

We will contruct Hash functions with theoretical guarantees.

Algorithms for Big Data (II) 12/17

Hash Functions

In Balls-into-Bins, we distribute balls uniformly and independently.

This can be implemented using Hash functions

Hash functions are important data structures that have been widely used in computer
science.

We will contruct Hash functions with theoretical guarantees.

Algorithms for Big Data (II) 12/17

Hash Functions

In Balls-into-Bins, we distribute balls uniformly and independently.

This can be implemented using Hash functions

Hash functions are important data structures that have been widely used in computer
science.

We will contruct Hash functions with theoretical guarantees.

Algorithms for Big Data (II) 12/17

Hash Functions

In Balls-into-Bins, we distribute balls uniformly and independently.

This can be implemented using Hash functions

Hash functions are important data structures that have been widely used in computer
science.

We will contruct Hash functions with theoretical guarantees.

Algorithms for Big Data (II) 12/17

Universal Hash Function Families

Let H be a family of functions from [m] to [n] where m ≥ n.

We call H k-universal if for every distinct x1, . . . , xk ∈ [m], we have

Prh∈H [h(x1) = h(x2) = · · · = h(xk)] ≤
1

nk−1
.

We call H strongly k-universal if for every distinct x1, . . . , xk ∈ [m], y1, . . . , yk ∈ [n], we
have

Prh∈H

[
k∧

i=1

h(xi) = yi

]
=

1

nk
.

Algorithms for Big Data (II) 13/17

Universal Hash Function Families

Let H be a family of functions from [m] to [n] where m ≥ n.

We call H k-universal if for every distinct x1, . . . , xk ∈ [m], we have

Prh∈H [h(x1) = h(x2) = · · · = h(xk)] ≤
1

nk−1
.

We call H strongly k-universal if for every distinct x1, . . . , xk ∈ [m], y1, . . . , yk ∈ [n], we
have

Prh∈H

[
k∧

i=1

h(xi) = yi

]
=

1

nk
.

Algorithms for Big Data (II) 13/17

Universal Hash Function Families

Let H be a family of functions from [m] to [n] where m ≥ n.

We call H k-universal if for every distinct x1, . . . , xk ∈ [m], we have

Prh∈H [h(x1) = h(x2) = · · · = h(xk)] ≤
1

nk−1
.

We call H strongly k-universal if for every distinct x1, . . . , xk ∈ [m], y1, . . . , yk ∈ [n], we
have

Prh∈H

[
k∧

i=1

h(xi) = yi

]
=

1

nk
.

Algorithms for Big Data (II) 13/17

Universal Hash Function Families

Let H be a family of functions from [m] to [n] where m ≥ n.

We call H k-universal if for every distinct x1, . . . , xk ∈ [m], we have

Prh∈H [h(x1) = h(x2) = · · · = h(xk)] ≤
1

nk−1
.

We call H strongly k-universal if for every distinct x1, . . . , xk ∈ [m], y1, . . . , yk ∈ [n], we
have

Prh∈H

[
k∧

i=1

h(xi) = yi

]
=

1

nk
.

Algorithms for Big Data (II) 13/17

Balls-into-Bins with 2-Universal Hash Family

Let Xij be the indicator of the event: i-th ball and j-th ball fall into the same bin.

Let X =
∑

1≤i≤j≤m Xij be the total number of collisions. Then

E [X] =
∑

1≤i<j≤m
E

[
Xij

]
≤

(
m
2

)
1

n
<

m2

2n
.

Assume the maxload is Y, which causes
(Y
2

)
≤ X collisions. Then

Pr
[(
Y
2

)
≥ m2

n

]
≤ Pr

[
X ≥ m2

n

]
≤ 1

n
.

Therefore, Pr
[
Y − 1 ≥ m

√
2/n

]
≤ 1

2 . The maxload is 1 +
√
2n when m = n with

probability at least 1/2.

Algorithms for Big Data (II) 14/17

Balls-into-Bins with 2-Universal Hash Family
Let Xij be the indicator of the event: i-th ball and j-th ball fall into the same bin.

Let X =
∑

1≤i≤j≤m Xij be the total number of collisions. Then

E [X] =
∑

1≤i<j≤m
E

[
Xij

]
≤

(
m
2

)
1

n
<

m2

2n
.

Assume the maxload is Y, which causes
(Y
2

)
≤ X collisions. Then

Pr
[(
Y
2

)
≥ m2

n

]
≤ Pr

[
X ≥ m2

n

]
≤ 1

n
.

Therefore, Pr
[
Y − 1 ≥ m

√
2/n

]
≤ 1

2 . The maxload is 1 +
√
2n when m = n with

probability at least 1/2.

Algorithms for Big Data (II) 14/17

Balls-into-Bins with 2-Universal Hash Family
Let Xij be the indicator of the event: i-th ball and j-th ball fall into the same bin.

Let X =
∑

1≤i≤j≤m Xij be the total number of collisions. Then

E [X] =
∑

1≤i<j≤m
E

[
Xij

]
≤

(
m
2

)
1

n
<

m2

2n
.

Assume the maxload is Y, which causes
(Y
2

)
≤ X collisions. Then

Pr
[(
Y
2

)
≥ m2

n

]
≤ Pr

[
X ≥ m2

n

]
≤ 1

n
.

Therefore, Pr
[
Y − 1 ≥ m

√
2/n

]
≤ 1

2 . The maxload is 1 +
√
2n when m = n with

probability at least 1/2.

Algorithms for Big Data (II) 14/17

Balls-into-Bins with 2-Universal Hash Family
Let Xij be the indicator of the event: i-th ball and j-th ball fall into the same bin.

Let X =
∑

1≤i≤j≤m Xij be the total number of collisions. Then

E [X] =
∑

1≤i<j≤m
E

[
Xij

]
≤

(
m
2

)
1

n
<

m2

2n
.

Assume the maxload is Y, which causes
(Y
2

)
≤ X collisions. Then

Pr
[(
Y
2

)
≥ m2

n

]
≤ Pr

[
X ≥ m2

n

]
≤ 1

n
.

Therefore, Pr
[
Y − 1 ≥ m

√
2/n

]
≤ 1

2 . The maxload is 1 +
√
2n when m = n with

probability at least 1/2.

Algorithms for Big Data (II) 14/17

Balls-into-Bins with 2-Universal Hash Family
Let Xij be the indicator of the event: i-th ball and j-th ball fall into the same bin.

Let X =
∑

1≤i≤j≤m Xij be the total number of collisions. Then

E [X] =
∑

1≤i<j≤m
E

[
Xij

]
≤

(
m
2

)
1

n
<

m2

2n
.

Assume the maxload is Y, which causes
(Y
2

)
≤ X collisions. Then

Pr
[(
Y
2

)
≥ m2

n

]
≤ Pr

[
X ≥ m2

n

]
≤ 1

n
.

Therefore, Pr
[
Y − 1 ≥ m

√
2/n

]
≤ 1

2 . The maxload is 1 +
√
2n when m = n with

probability at least 1/2.

Algorithms for Big Data (II) 14/17

Construction of 2-Universal Family

Now we explicitly construct a universal family of Hash functions from [m] to [n].

Let p ≥ m be a prime and let

ha,b(x) = ((ax+ b) mod p) mod n.

The family is
H =

{
ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1

}
.

Algorithms for Big Data (II) 15/17

Construction of 2-Universal Family

Now we explicitly construct a universal family of Hash functions from [m] to [n].

Let p ≥ m be a prime and let

ha,b(x) = ((ax+ b) mod p) mod n.

The family is
H =

{
ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1

}
.

Algorithms for Big Data (II) 15/17

Construction of 2-Universal Family

Now we explicitly construct a universal family of Hash functions from [m] to [n].

Let p ≥ m be a prime and let

ha,b(x) = ((ax+ b) mod p) mod n.

The family is
H =

{
ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1

}
.

Algorithms for Big Data (II) 15/17

Construction of 2-Universal Family

Now we explicitly construct a universal family of Hash functions from [m] to [n].

Let p ≥ m be a prime and let

ha,b(x) = ((ax+ b) mod p) mod n.

The family is
H =

{
ha,b : 1 ≤ a ≤ p − 1, 0 ≤ b ≤ p − 1

}
.

Algorithms for Big Data (II) 15/17

Proof

We show that H constructed above is indeed 2-universal.

We compute the colliding probability

Prha,b∈H [ha,b(x) = ha,b(y)]

for x , y.

First, we have if x , y, then ax+ b , ay+ b mod p.

Moreover (a, b) → (ax+ b, ay+ b) is a bijection from {1, . . . , p − 1} × {0, . . . , p − 1} to{
(u, v) : 0 ≤ u, v ≤ p − 1, u , v

}
.

This is because

{
ax+ b = u mod p

ay+ b = v mod p
has a unique solution

{
a = v−u

y−x mod p

b = u − ax mod p.

Algorithms for Big Data (II) 16/17

Proof
We show that H constructed above is indeed 2-universal.

We compute the colliding probability

Prha,b∈H [ha,b(x) = ha,b(y)]

for x , y.

First, we have if x , y, then ax+ b , ay+ b mod p.

Moreover (a, b) → (ax+ b, ay+ b) is a bijection from {1, . . . , p − 1} × {0, . . . , p − 1} to{
(u, v) : 0 ≤ u, v ≤ p − 1, u , v

}
.

This is because

{
ax+ b = u mod p

ay+ b = v mod p
has a unique solution

{
a = v−u

y−x mod p

b = u − ax mod p.

Algorithms for Big Data (II) 16/17

Proof
We show that H constructed above is indeed 2-universal.

We compute the colliding probability

Prha,b∈H [ha,b(x) = ha,b(y)]

for x , y.

First, we have if x , y, then ax+ b , ay+ b mod p.

Moreover (a, b) → (ax+ b, ay+ b) is a bijection from {1, . . . , p − 1} × {0, . . . , p − 1} to{
(u, v) : 0 ≤ u, v ≤ p − 1, u , v

}
.

This is because

{
ax+ b = u mod p

ay+ b = v mod p
has a unique solution

{
a = v−u

y−x mod p

b = u − ax mod p.

Algorithms for Big Data (II) 16/17

Proof
We show that H constructed above is indeed 2-universal.

We compute the colliding probability

Prha,b∈H [ha,b(x) = ha,b(y)]

for x , y.

First, we have if x , y, then ax+ b , ay+ b mod p.

Moreover (a, b) → (ax+ b, ay+ b) is a bijection from {1, . . . , p − 1} × {0, . . . , p − 1} to{
(u, v) : 0 ≤ u, v ≤ p − 1, u , v

}
.

This is because

{
ax+ b = u mod p

ay+ b = v mod p
has a unique solution

{
a = v−u

y−x mod p

b = u − ax mod p.

Algorithms for Big Data (II) 16/17

Proof
We show that H constructed above is indeed 2-universal.

We compute the colliding probability

Prha,b∈H [ha,b(x) = ha,b(y)]

for x , y.

First, we have if x , y, then ax+ b , ay+ b mod p.

Moreover (a, b) → (ax+ b, ay+ b) is a bijection from {1, . . . , p − 1} × {0, . . . , p − 1} to{
(u, v) : 0 ≤ u, v ≤ p − 1, u , v

}
.

This is because

{
ax+ b = u mod p

ay+ b = v mod p
has a unique solution

{
a = v−u

y−x mod p

b = u − ax mod p.

Algorithms for Big Data (II) 16/17

Proof (cont’d)

Therefore,

Prha,b∈H [ha,b(x) = ha,b(y)] = Pr(u,v)∈F2p :u,v [u = v mod n] .

The number of (u, v) with u , v is p(p − 1).

For each u, the number of values of v with u = v mod n is at most ⌈p/n⌉ − 1.

The probabilty is therefore at most

p(⌈p/n⌉ − 1)

p(p − 1)
≤ 1

n
.

Algorithms for Big Data (II) 17/17

Proof (cont’d)

Therefore,

Prha,b∈H [ha,b(x) = ha,b(y)] = Pr(u,v)∈F2p :u,v [u = v mod n] .

The number of (u, v) with u , v is p(p − 1).

For each u, the number of values of v with u = v mod n is at most ⌈p/n⌉ − 1.

The probabilty is therefore at most

p(⌈p/n⌉ − 1)

p(p − 1)
≤ 1

n
.

Algorithms for Big Data (II) 17/17

Proof (cont’d)

Therefore,

Prha,b∈H [ha,b(x) = ha,b(y)] = Pr(u,v)∈F2p :u,v [u = v mod n] .

The number of (u, v) with u , v is p(p − 1).

For each u, the number of values of v with u = v mod n is at most ⌈p/n⌉ − 1.

The probabilty is therefore at most

p(⌈p/n⌉ − 1)

p(p − 1)
≤ 1

n
.

Algorithms for Big Data (II) 17/17

Proof (cont’d)

Therefore,

Prha,b∈H [ha,b(x) = ha,b(y)] = Pr(u,v)∈F2p :u,v [u = v mod n] .

The number of (u, v) with u , v is p(p − 1).

For each u, the number of values of v with u = v mod n is at most ⌈p/n⌉ − 1.

The probabilty is therefore at most

p(⌈p/n⌉ − 1)

p(p − 1)
≤ 1

n
.

Algorithms for Big Data (II) 17/17

Proof (cont’d)

Therefore,

Prha,b∈H [ha,b(x) = ha,b(y)] = Pr(u,v)∈F2p :u,v [u = v mod n] .

The number of (u, v) with u , v is p(p − 1).

For each u, the number of values of v with u = v mod n is at most ⌈p/n⌉ − 1.

The probabilty is therefore at most

p(⌈p/n⌉ − 1)

p(p − 1)
≤ 1

n
.

Algorithms for Big Data (II) 17/17

