Algorithms for Big Data (XIV)

Chihao Zhang

Shanghai Jiao Tong University

Dec. 20, 2019

Last week we studied electrical networks using matrices.

Last week we studied electrical networks using matrices.

We defined the graph Laplacian L:

 $L = U^T W U.$

Last week we studied electrical networks using matrices.

We defined the graph Laplacian L:

 $L = U^T W U.$

We also defined the notion of effective resistance between two vertices in terms of L:

$$\mathbf{R}_{\rm eff}(\mathbf{u}, \mathbf{v}) \triangleq (\mathbf{e}_{\rm u} - \mathbf{e}_{\rm v})^{\rm T} \mathbf{L}^+ (\mathbf{e}_{\rm u} - \mathbf{e}_{\rm v}).$$

Sparsification

Given a graph G, the goal of sparsification is to construct a sparse graph H such that

$$(1-\varepsilon)L_G \preccurlyeq L_H \preccurlyeq (1+\varepsilon)L_G.$$

Sparsification

Given a graph G, the goal of sparsification is to construct a sparse graph H such that

$$(1-\varepsilon)L_G \preccurlyeq L_H \preccurlyeq (1+\varepsilon)L_G.$$

Similar Laplacian implies

- similar spectrum;
- similar effective resistance between any two vertices;
- similar clustering;

> ...

We use $L_{u,\nu}$ to denote the Laplacian of the unweighted graph containing a single edge $\{u,\nu\}.$

We use $L_{u,\nu}$ to denote the Laplacian of the unweighted graph containing a single edge $\{u,\nu\}.$

For a graph G = (V, E), we have

$$L_{G} = \sum_{\{u,v\}\in E} w_{u,v} \cdot L_{u,v},$$

where $w_{u,\nu}$ is the weight on the edge $\{u,\nu\}\in\mathsf{E}.$

We use $L_{u,\nu}$ to denote the Laplacian of the unweighted graph containing a single edge $\{u,\nu\}.$

For a graph G = (V, E), we have

$$L_{G} = \sum_{\{u,v\}\in E} w_{u,v} \cdot L_{u,v},$$

where $w_{u,\nu}$ is the weight on the edge $\{u,\nu\}\in E.$

Let $\{p_{u,\nu}\}_{\{u,\nu\}\in E}$ be a collection of probabilities on each pair of vertices.

H contains the edge $\{u, v\}$ with probability $p_{u,v}$ for every pair $\{u, v\}$ independently.

H contains the edge $\{u, v\}$ with probability $p_{u,v}$ for every pair $\{u, v\}$ independently.

If an edge $\{u, v\} \in E_H$, we assign it with weight $w_{u,v}/p_{u,v}$.

H contains the edge $\{u, v\}$ with probability $p_{u,v}$ for every pair $\{u, v\}$ independently.

If an edge $\{u, v\} \in E_H$, we assign it with weight $w_{u,v}/p_{u,v}$.

It is easy to verify that

 $\mathbf{E}\left[\mathsf{L}_{\mathsf{H}}\right] =\mathsf{L}_{\mathsf{G}}.$

H contains the edge $\{u, v\}$ with probability $p_{u,v}$ for every pair $\{u, v\}$ independently.

If an edge $\{u, v\} \in E_H$, we assign it with weight $w_{u,v}/p_{u,v}$.

It is easy to verify that

$$\mathbf{E}\left[\mathsf{L}_{\mathsf{H}}\right]=\mathsf{L}_{\mathsf{G}}.$$

We will carefully choose $\{p_{u,v}\}$ to guarantee that

H contains the edge $\{u, v\}$ with probability $p_{u,v}$ for every pair $\{u, v\}$ independently.

If an edge $\{u, v\} \in E_H$, we assign it with weight $w_{u,v}/p_{u,v}$.

It is easy to verify that

$$\mathbf{E}\left[\mathsf{L}_{\mathsf{H}}\right] =\mathsf{L}_{\mathsf{G}}.$$

We will carefully choose $\{p_{u,\nu}\}$ to guarantee that

- H is sparse with high probability;
- ► L_H is well-concentrated to its expectation.

Sometimes it is more convenient to work with L_G^+ , the pseudo-inverse of L_G .

Sometimes it is more convenient to work with L_G^+ , the pseudo-inverse of L_G .

Note that

$$L_{H} \preccurlyeq (1+\epsilon) L_{G} \iff L_{G}^{+/2} L_{H} L_{G}^{+/2} \preccurlyeq (1+\epsilon) L_{G}^{+/2} L_{G} L_{G}^{+/2}.$$

Sometimes it is more convenient to work with L_G^+ , the pseudo-inverse of L_G .

Note that
$$L_{H} \preccurlyeq (1+\epsilon)L_{G} \iff L_{G}^{+/2}L_{H}L_{G}^{+/2} \preccurlyeq (1+\epsilon)L_{G}^{+/2}L_{G}L_{G}^{+/2}.$$

The matrix $L_G^{+/2}L_GL_G^{+/2}$ is the projection onto the column space of L_G .

Note that

Sometimes it is more convenient to work with L_G^+ , the pseudo-inverse of L_G .

$$L_{H} \preccurlyeq (1+\epsilon)L_{G} \iff L_{G}^{+/2}L_{H}L_{G}^{+/2} \preccurlyeq (1+\epsilon)L_{G}^{+/2}L_{G}L_{G}^{+/2}$$

The matrix $L_G^{+/2}L_GL_G^{+/2}$ is the projection onto the column space of L_G .

We will now study $L_G^{+/2}L_HL_G^{+/2}$.

Chernoff Bound for Matrices

Chernoff Bound for Matrices

The main tool to establish concentration is the following analogue of Chernoff bound for matrices.

Chernoff Bound for Matrices

The main tool to establish concentration is the following analogue of Chernoff bound for matrices.

Theorem

Let $X_1, \ldots, X_n \in \mathbb{R}^{n \times n}$ be independent random positive semi-definite matrices such that $\lambda_{\max}(X_i) \leq R$ almost surely. Let $X = \sum_{i=1}^n X_i$. Let μ_{\min} and μ_{\max} be the minimum and maximum eigenvalues of $\mathbf{E}[X]$ respectively. Then

Setting $p_{u,\nu}$

For every pair of vertices u and v, we define

$$p_{u,v} \triangleq \frac{1}{R} w_{u,v} \| L_G^{+/2} L_{u,v} L_G^{+/2} \|.$$

Setting $p_{u,v}$

For every pair of vertices u and v, we define

$$p_{u,v} \triangleq \frac{1}{R} w_{u,v} \| L_G^{+/2} L_{u,v} L_G^{+/2} \|.$$

Following our construction of H, for every $\{u, v\}$, define a random variable

$$X_{u,v} = \begin{cases} (w_{u,v}/p_{u,v}) L_G^{+/2} L_{u,v} L_G^{+/2}, & \text{w.p. } p_{u,v} \\ 0, & \text{otherwise.} \end{cases}$$

Setting $p_{u,v}$

For every pair of vertices u and v, we define

$$p_{u,v} \triangleq \frac{1}{R} w_{u,v} \| L_G^{+/2} L_{u,v} L_G^{+/2} \|.$$

Following our construction of H, for every $\{u, v\}$, define a random variable

$$X_{u,v} = \begin{cases} (w_{u,v}/p_{u,v}) L_G^{+/2} L_{u,v} L_G^{+/2}, & \text{w.p. } p_{u,v} \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$L_G^{+/2}L_HL_G^{+/2}=\sum_{\{u,\nu\}\in E}X_{u,\nu}, \text{ and }$$

Setting $p_{u,v}$

For every pair of vertices u and v, we define

$$p_{u,v} \triangleq \frac{1}{R} w_{u,v} \| L_G^{+/2} L_{u,v} L_G^{+/2} \|.$$

Following our construction of H, for every $\{u, v\}$, define a random variable

$$X_{u,v} = \begin{cases} (w_{u,v}/p_{u,v}) L_G^{+/2} L_{u,v} L_G^{+/2}, & \text{w.p. } p_{u,v} \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$L_G^{+/2}L_HL_G^{+/2}=\sum_{\{\mathfrak{u},\nu\}\in E}X_{\mathfrak{u},\nu}\text{, and}$$

$$\lambda_{\max}(X_{u,v}) \leq \mathsf{R}.$$

It remains to compute $p_{u,v}$.

It remains to compute $p_{u,v}$.

It is easy to verify that

$$L_G^{+/2}L_{u,\nu}L_G^{+/2} = L_G^{+/2}(\boldsymbol{e}_u - \boldsymbol{e}_\nu)(\boldsymbol{e}_u - \boldsymbol{e}_\nu)^T L_G^{+/2}$$

is a rank-1 matrix.

It remains to compute $p_{u,v}$.

It is easy to verify that

$$L_G^{+/2}L_{u,\nu}L_G^{+/2} = L_G^{+/2}(\boldsymbol{e}_u - \boldsymbol{e}_\nu)(\boldsymbol{e}_u - \boldsymbol{e}_\nu)^T L_G^{+/2}$$

is a rank-1 matrix.

Therefore

$$\|L_{G}^{+/2}L_{u,\nu}L_{G}^{+/2}\| = Tr(L_{G}^{+/2}L_{u,\nu}L_{G}^{+/2}) = (\mathbf{e}_{u} - \mathbf{e}_{\nu})^{T}L_{G}^{+}(\mathbf{e}_{u} - \mathbf{e}_{\nu}) = R_{eff}(u,\nu).$$

It remains to compute $p_{u,v}$.

It is easy to verify that

$$L_G^{+/2}L_{u,\nu}L_G^{+/2} = L_G^{+/2}(\boldsymbol{e}_u - \boldsymbol{e}_\nu)(\boldsymbol{e}_u - \boldsymbol{e}_\nu)^T L_G^{+/2}$$

is a rank-1 matrix.

Therefore

$$\|L_{G}^{+/2}L_{u,\nu}L_{G}^{+/2}\| = \operatorname{Tr}(L_{G}^{+/2}L_{u,\nu}L_{G}^{+/2}) = (\mathbf{e}_{u} - \mathbf{e}_{\nu})^{\mathsf{T}}L_{G}^{+}(\mathbf{e}_{u} - \mathbf{e}_{\nu}) = R_{\text{eff}}(u,\nu).$$

We can then use the algorithm learnt in the last lecture to approximate $R_{eff}(u, v)$.

We now compute $\mathbf{E} [|\mathbf{E}_H|]$.

We now compute \mathbf{E} [$|E_H|$]. It holds that

$$\mathbf{E}\left[|\mathsf{E}_{\mathsf{H}}|\right] = \sum_{\{u,\nu\}\in\mathsf{E}} p_{u,\nu} = \frac{\sum_{\{u,\nu\}\in\mathsf{E}} w_{u,\nu} \cdot \mathsf{R}_{\mathrm{eff}}(u,\nu)}{\mathsf{R}}.$$

We now compute $\mathbf{E} [|E_H|]$. It holds that

$$\mathbf{E}\left[|\mathsf{E}_{\mathsf{H}}|\right] = \sum_{\{\mathsf{u},\mathsf{v}\}\in\mathsf{E}} p_{\mathsf{u},\mathsf{v}} = \frac{\sum_{\{\mathsf{u},\mathsf{v}\}\in\mathsf{E}} w_{\mathsf{u},\mathsf{v}} \cdot \mathsf{R}_{\mathrm{eff}}(\mathsf{u},\mathsf{v})}{\mathsf{R}}.$$

We can also directly compute

$$\begin{split} \sum_{\{u,\nu\}\in E} w_{u,\nu} R_{eff}(u,\nu) &= \sum_{\{u,\nu\}\in E} w_{u,\nu} (\mathbf{e}_u - \mathbf{e}_\nu)^T L_G^+ (\mathbf{e}_u - \mathbf{e}_\nu) \\ &= \sum_{\{u,\nu\}\in E} w_{u,\nu} Tr(L_G^+ (\mathbf{e}_u - \mathbf{e}_\nu) (\mathbf{e}_u - \mathbf{e}_\nu)^T) \\ &= Tr\left(\sum_{\{u,\nu\}\in E} L_G^+ w_{u,\nu} (\mathbf{e}_u - \mathbf{e}_\nu) (\mathbf{e}_u - \mathbf{e}_\nu)^T\right) \\ &= Tr\left(L_G^+ L_G\right) = n - 1. \end{split}$$

Therefore, $\mathbf{E}[|\mathsf{E}_{\mathsf{H}}|] = \frac{n-1}{\mathsf{R}}$.

Therefore, $\mathbf{E}[|\mathsf{E}_{\mathsf{H}}|] = \frac{n-1}{\mathsf{R}}$.

Note that $\mathbf{E}[|\mathsf{E}_{\mathsf{H}}|]$ is the sum of m independent Bernoulli trials, therefore, for suitable R, we can control its concentration using the standard Chernoff bound.

Therefore, $\mathbf{E}[|\mathbf{E}_{\mathsf{H}}|] = \frac{n-1}{\mathsf{R}}$.

Note that $\mathbf{E}[|\mathsf{E}_{\mathsf{H}}|]$ is the sum of m independent Bernoulli trials, therefore, for suitable R, we can control its concentration using the standard Chernoff bound.

We choose
$$R = \frac{\epsilon^2}{3.5 \log n}$$
, then $|E_H| \le 4\epsilon^{-2}n \log n$ with high probability.

Therefore, $\mathbf{E}[|\mathbf{E}_{\mathrm{H}}|] = \frac{n-1}{R}$.

Note that $\mathbf{E}[|\mathsf{E}_{\mathsf{H}}|]$ is the sum of m independent Bernoulli trials, therefore, for suitable R, we can control its concentration using the standard Chernoff bound.

We choose $R = \frac{\epsilon^2}{3.5 \log n}$, then $|E_H| \le 4\epsilon^{-2}n \log n$ with high probability.

Now we can apply Matrix Chernoff bound to obtain the concentration bound needed.

 $p_{u,v} > 1?$

 $p_{u,v} > 1?$