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Review

Last week we studied electrical networks using matrices.

We defined the graph Laplacian L:

L = UTWU.

We also defined the notion of effective resistance between two vertices in terms of L:

Reff(u, v) ≜ (eu − ev)TL+(eu − ev).
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Sparsification

Given a graph G, the goal of sparsification is to construct a sparse graph H such that

(1− ε)LG ≼ LH ≼ (1+ ε)LG.

Similar Laplacian implies
▶ similar spectrum;
▶ similar effective resistance between any two vertices;
▶ similar clustering;
▶ …
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The Construction

We use Lu,v to denote the Laplacian of the unweighted graph containing a single edge
{u, v}.

For a graph G = (V, E), we have

LG =
∑

{u,v}∈E

wu,v · Lu,v,

where wu,v is the weight on the edge {u, v} ∈ E.

Let {pu,v}{u,v}∈E be a collection of probabilities on each pair of vertices.
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Let H = (V, EH) be the sparse graph we are going to construct…

H contains the edge {u, v} with probability pu,v for every pair {u, v} independently.

If an edge {u, v} ∈ EH, we assign it with weight wu,v/pu,v.

It is easy to verify that
E [LH] = LG.

We will carefully choose {pu,v} to guarantee that
▶ H is sparse with high probability;
▶ LH is well-concentrated to its expectation.
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A Transformation

Sometimes it is more convenient to work with L+G, the pseudo-inverse of LG.

Note that
LH ≼ (1+ ε)LG ⇐⇒ L

+/2

G LHL
+/2

G ≼ (1+ ε)L
+/2

G LGL
+/2

G .

The matrix L+/2

G LGL
+/2

G is the projection onto the column space of LG.

We will now study L
+/2

G LHL
+/2

G .
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Chernoff Bound for Matrices

The main tool to establish concentration is the following analogue of Chernoff bound for
matrices.

Theorem
Let X1, . . . , Xn ∈ Rn×n be independent random positive semi-definite matrices such
that λmax(Xi) ≤ R almost surely. Let X =

∑n
i=1 Xi. Let µmin and µmax be the minimum

and maximum eigenvalues of E [X] respectively. Then

▶ Pr [λmin (X) ≤ (1− ε)µmin] ≤ n
(

e−ε

(1−ε)1−ε

)µmin/R

, for 0 < ε < 1, and

▶ Pr [λmax (X) ≥ (1+ ε)µmax] ≤ n
(

eε

(1+ε)1+ε

)µmax/R

, for ε > 0.
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Setting pu,v

For every pair of vertices u and v, we define

pu,v ≜
1

R
wu,v∥L+/2

G Lu,vL
+/2

G ∥.

Following our construction of H, for every {u, v}, define a random variable

Xu,v =

{
(wu,v/pu,v)L

+/2

G Lu,vL
+/2

G , w.p. pu,v

0, otherwise.

Then
L
+/2

G LHL
+/2

G =
∑

{u,v}∈E

Xu,v, and

λmax (Xu,v) ≤ R.
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Relation to Resistance

It remains to compute pu,v.

It is easy to verify that

L
+/2

G Lu,vL
+/2

G = L
+/2

G (eu − ev)(eu − ev)TL
+/2

G

is a rank-1 matrix.

Therefore

∥L+/2

G Lu,vL
+/2

G ∥ = Tr(L+/2

G Lu,vL
+/2

G ) = (eu − ev)TL+G(eu − ev) = Reff(u, v).

We can then use the algorithm learnt in the last lecture to approximate Reff(u, v).
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Analysis
We now compute E [|EH|]. It holds that

E [|EH|] =
∑

{u,v}∈E

pu,v =

∑
{u,v}∈Ewu,v · Reff(u, v)

R
.

We can also directly compute∑
{u,v}∈E

wu,vReff(u, v) =
∑

{u,v}∈E

wu,v(eu − ev)TL+G(eu − ev)

=
∑

{u,v}∈E

wu,vTr(L+G(eu − ev)(eu − ev)T )

= Tr

 ∑
{u,v}∈E

L+Gwu,v(eu − ev)(eu − ev)T


= Tr
(
L+GLG

)
= n− 1.
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Therefore, E [|EH|] =
n−1
R

.

Note that E [|EH|] is the sum ofm independent Bernoulli trials, therefore, for suitable R,
we can control its concentration using the standard Chernoff bound.

We choose R = ε2

3.5 logn , then |EH| ≤ 4ε−2n logn with high probability.

Now we can apply Matrix Chernoff bound to obtain the concentration bound needed.
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pu,v > 1?
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