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REVIEW

Last week we studied electrical networks using matrices.

We defined the graph Laplacian L:

L=u"wu.

We also defined the notion of effective resistance between two vertices in terms of L:

Regr(u, v) £ (ey — ev)T]—+(eu —ey).
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SPARSIFICATION

Given a graph G, the goal of sparsification is to construct a sparse graph H such that

(1 — S)LG <LH <= (] +€)L6.

Similar Laplacian implies
» similar spectrum;
> similar effective resistance between any two vertices;
» similar clustering;
> ..
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THE CONSTRUCTION

We use L., to denote the Laplacian of the unweighted graph containing a single edge
{u, vl

For a graph G = (V, E), we have

Lg = Z Wy * I—u,w
{u,v}€E

where wy, is the weight on the edge {u, v} € E.

Let {pu»v}{u,v}eE be a collection of probabilities on each pair of vertices.
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Let H = (V, Eyy) be the sparse graph we are going to construct...

H contains the edge {u, v} with probability p.,, for every pair {u, v} independently.

If an edge {u, v} € Ey, we assign it with weight Wy, /pu.,.

It is easy to verify that
E Lyl = Lg.

We will carefully choose {p..,} to guarantee that
> H is sparse with high probability;

> Ly is well-concentrated to its expectation.
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A TRANSFORMATION

Sometimes it is more convenient to work with LE, the pseudo-inverse of Lg.

Note that
Ly < (T+e)lg &= LaLE? < (14 oL PLe ™

The matrix Lg/ngLJGr/z is the projection onto the column space of Lg.

We will now study Lé/ZLHLJGr/Z.
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CHERNOFF BOUND FOR MATRICES

The main tool to establish concentration is the following analogue of Chernoff bound for
matrices.

Theorem

Let Xi,..., Xy € R™™ be independent random positive semi-definite matrices such
that Amax(Xi) < R almost surely. Let X = Y " ; Xj. Let tmin and pmax be the minimum
and maximum eigenvalues of E [X] respectively. Then

> Pr[)\min(X)SU—s)umm]Sn( e o < & < 1, and

£ Wmax/R
» Pr[Amax (X) > (1 + E)P‘-max] <n ((H—iﬁ)

) Hmin/R

, fore > 0.
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SETTING Py

For every pair of vertices u and v, we define

1 2 2
Puv £ Ewu,VHLE/ LuyVLg/ H

Following our construction of H, for every {u, v}, define a random variable

2 2
X, . — (Wu,v/pu,\))[—g/ Lu,ng/ y  W.p. Puyv
o 0, otherwise.

Then
L2l ? = Y Xuy, and
{u,v}€E

)\max (Xu,v) <R.
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RELATION TO RESISTANCE

It remains to compute py.v.
It is easy to verify that

2 2 2 2
L L L = 1 (e Ty

u ev)(eu - ev)
is a rank-1 matrix.

Therefore

1L Lun Il = Tr(Lg *Luy L) = (e — ) L(ew — @) = Resr(w, v).

We can then use the algorithm learnt in the last lecture to approximate Reg(u, v).
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ANALYSIS
We now compute E [[Ey]]. It holds that

Z EWuyv - Refr(u, v)
E [|EH|] = Z Puyv = fuvie R .
{u,v}ek
We can also directly compute
Z Wu,vReff(uaV) = Z Wu,v(eu - ev)TI—g(eu —e)
{u,v}€E {u,v}eE

= Z Wu,vTr(LE(eu —ey)(ey — ev)T)
{u,v}eke

=Tr Z I—J(Ewu,v(eu —ey)(ey — ev)T
{u,v}€E

:Tr(]_é]_g) =n-—1.
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Therefore, E [|Eq|] = "—E].

Note that E [[Eyy|] is the sum of m independent Bernoulli trials, therefore, for suitable R,
we can control its concentration using the standard Chernoff bound.

We choose R = %, then [Ey| < 4e?nlogn with high probability.

Now we can apply Matrix Chernoff bound to obtain the concentration bound needed.
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Puy > 17
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