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Review

We studied random walks on general graphs using spectral decomposition.

We introduced the notion of electrical networks.

We derived bounds on the cover time of random walks.
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Electrical Network

Now we formally justify the electrical network argument used last week.

For an edge with weight we, we define its resistance re = w−1
e .

For an edge {u, v}, we can assign numbers i(u, v) = −i(v, u) as the current on the edge.

The collection of currents is required to satisfy Kirchhoff’s law.

Ohm’s law is used to define the potential drop between two ends of an edge.
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Matrix Form

It is instructive to express physical laws in the matrix form.

We use an ordered pair (u, v) satisfying u ≤ v to represent an edge {u, v} ∈ E.

The signed edge-vertex adjacency matrix U ∈ {0, 1,−1}E×V is defined as

U((u, v), w) =


1 if w = u

−1 if w = v

0 otherwise.

Let W ∈ RE×E be diag(w(e1), . . . , w(e|E|)).
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We use i ∈ RE to denote the vector of currents, v ∈ RV to denote the vector of voltages.

It holds that
i = W ·U · v.

We use iext(u) to denote the amount of current entering u externally.

Then iext(u) =
∑

v∈N(u) i(u, v), and

iext = UTi = UT ·W ·U · v.

If iext(u) = 0, we call it a internal node, otherwise, we call it a boundary node.
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Graph Laplacian

The matrix L ≜ UTWU is again graph Laplacian.

Consider the spectral decomposition of L:

L =
∑
i>1

λivivTi .

Using the decomposition, the equation becomes to

∑
i≥1

aivi =

(∑
i>1

λivivTi

)∑
i≥1

bivi

 ,

where iext =
∑

i≥1 aivi and v =
∑

i≥1 bivi.
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Therefore, we must have a1 = 0, which means the current entering the network is equal
to the current leaving the network!

Define the Moore-Penrose pseudo-inverse of L

L+ =
∑
i>1

λ−1
i vivTi .

Given iext, we can compute v as long as we can compute L+.

We shift v so that
v = L+iext.
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Effective Resistance

We are now able to formally define effective resistance.

Reff(u, v) ≜ (eu − ev)TL+(eu − ev).

To see this, assuming one unit of current enters u and leaves v:

v = L+(eu − ev).

On the other hand,

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev).
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Note that L+ is positive semi-definite, we can define

L+/2 =
∑
i>1

λ−1/2vi.

Then we can write

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev) = ∥L+/2(eu − ev)∥22.

Examples: Series and Parallel graphs.
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Approximating Effective Resistance

Directly computing effective resistance requires to compute L+, which is costly.

We can view L+/2eu and L+/2ev as two vectors in Rn and approximate their distance
using metric embedding technique.

Recall in Lecture 6, we learnt:

Theorem
For any 0 < ε < 1

2
and any positive integerm, consider a set ofm points S ⊆ Rn. There

exists an matrix A ∈ Rk×n where k = O
(
ε−2 logm

)
satisfying

∀x,y ∈ S, (1− ε)∥x− y∥ ≤ ∥Ax−Ay∥ ≤ (1+ ε)∥x− y∥.
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In our proof of JLT, each entry of the matrix A is from N (0, 1/k).

We only need to show how to compute AL+/2 efficiently…

Let L ′ ≜ W1/2U, then (L ′)TL ′ = L+.

Therefore ∥L ′(eu − ev)∥22 = Reff(u, v).

We only need to solve d-linear equations in L to obtain AL ′L.
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