
Algorithms for Big Data (XIII)

Chihao Zhang

Shanghai Jiao Tong University

Dec. 13, 2019

Algorithms for Big Data (XIII) 1/11

Review

We studied random walks on general graphs using spectral decomposition.

We introduced the notion of electrical networks.

We derived bounds on the cover time of random walks.

Algorithms for Big Data (XIII) 2/11

Review

We studied random walks on general graphs using spectral decomposition.

We introduced the notion of electrical networks.

We derived bounds on the cover time of random walks.

Algorithms for Big Data (XIII) 2/11

Review

We studied random walks on general graphs using spectral decomposition.

We introduced the notion of electrical networks.

We derived bounds on the cover time of random walks.

Algorithms for Big Data (XIII) 2/11

Review

We studied random walks on general graphs using spectral decomposition.

We introduced the notion of electrical networks.

We derived bounds on the cover time of random walks.

Algorithms for Big Data (XIII) 2/11

Electrical Network

Now we formally justify the electrical network argument used last week.

For an edge with weight we, we define its resistance re = w−1
e .

For an edge {u, v}, we can assign numbers i(u, v) = −i(v, u) as the current on the edge.

The collection of currents is required to satisfy Kirchhoff’s law.

Ohm’s law is used to define the potential drop between two ends of an edge.

Algorithms for Big Data (XIII) 3/11

Electrical Network

Now we formally justify the electrical network argument used last week.

For an edge with weight we, we define its resistance re = w−1
e .

For an edge {u, v}, we can assign numbers i(u, v) = −i(v, u) as the current on the edge.

The collection of currents is required to satisfy Kirchhoff’s law.

Ohm’s law is used to define the potential drop between two ends of an edge.

Algorithms for Big Data (XIII) 3/11

Electrical Network

Now we formally justify the electrical network argument used last week.

For an edge with weight we, we define its resistance re = w−1
e .

For an edge {u, v}, we can assign numbers i(u, v) = −i(v, u) as the current on the edge.

The collection of currents is required to satisfy Kirchhoff’s law.

Ohm’s law is used to define the potential drop between two ends of an edge.

Algorithms for Big Data (XIII) 3/11

Electrical Network

Now we formally justify the electrical network argument used last week.

For an edge with weight we, we define its resistance re = w−1
e .

For an edge {u, v}, we can assign numbers i(u, v) = −i(v, u) as the current on the edge.

The collection of currents is required to satisfy Kirchhoff’s law.

Ohm’s law is used to define the potential drop between two ends of an edge.

Algorithms for Big Data (XIII) 3/11

Electrical Network

Now we formally justify the electrical network argument used last week.

For an edge with weight we, we define its resistance re = w−1
e .

For an edge {u, v}, we can assign numbers i(u, v) = −i(v, u) as the current on the edge.

The collection of currents is required to satisfy Kirchhoff’s law.

Ohm’s law is used to define the potential drop between two ends of an edge.

Algorithms for Big Data (XIII) 3/11

Electrical Network

Now we formally justify the electrical network argument used last week.

For an edge with weight we, we define its resistance re = w−1
e .

For an edge {u, v}, we can assign numbers i(u, v) = −i(v, u) as the current on the edge.

The collection of currents is required to satisfy Kirchhoff’s law.

Ohm’s law is used to define the potential drop between two ends of an edge.

Algorithms for Big Data (XIII) 3/11

Matrix Form

It is instructive to express physical laws in the matrix form.

We use an ordered pair (u, v) satisfying u ≤ v to represent an edge {u, v} ∈ E.

The signed edge-vertex adjacency matrix U ∈ {0, 1,−1}E×V is defined as

U((u, v), w) =


1 if w = u

−1 if w = v

0 otherwise.

Let W ∈ RE×E be diag(w(e1), . . . , w(e|E|)).

Algorithms for Big Data (XIII) 4/11

Matrix Form

It is instructive to express physical laws in the matrix form.

We use an ordered pair (u, v) satisfying u ≤ v to represent an edge {u, v} ∈ E.

The signed edge-vertex adjacency matrix U ∈ {0, 1,−1}E×V is defined as

U((u, v), w) =


1 if w = u

−1 if w = v

0 otherwise.

Let W ∈ RE×E be diag(w(e1), . . . , w(e|E|)).

Algorithms for Big Data (XIII) 4/11

Matrix Form

It is instructive to express physical laws in the matrix form.

We use an ordered pair (u, v) satisfying u ≤ v to represent an edge {u, v} ∈ E.

The signed edge-vertex adjacency matrix U ∈ {0, 1,−1}E×V is defined as

U((u, v), w) =


1 if w = u

−1 if w = v

0 otherwise.

Let W ∈ RE×E be diag(w(e1), . . . , w(e|E|)).

Algorithms for Big Data (XIII) 4/11

Matrix Form

It is instructive to express physical laws in the matrix form.

We use an ordered pair (u, v) satisfying u ≤ v to represent an edge {u, v} ∈ E.

The signed edge-vertex adjacency matrix U ∈ {0, 1,−1}E×V is defined as

U((u, v), w) =


1 if w = u

−1 if w = v

0 otherwise.

Let W ∈ RE×E be diag(w(e1), . . . , w(e|E|)).

Algorithms for Big Data (XIII) 4/11

Matrix Form

It is instructive to express physical laws in the matrix form.

We use an ordered pair (u, v) satisfying u ≤ v to represent an edge {u, v} ∈ E.

The signed edge-vertex adjacency matrix U ∈ {0, 1,−1}E×V is defined as

U((u, v), w) =


1 if w = u

−1 if w = v

0 otherwise.

Let W ∈ RE×E be diag(w(e1), . . . , w(e|E|)).

Algorithms for Big Data (XIII) 4/11

We use i ∈ RE to denote the vector of currents, v ∈ RV to denote the vector of voltages.

It holds that
i = W ·U · v.

We use iext(u) to denote the amount of current entering u externally.

Then iext(u) =
∑

v∈N(u) i(u, v), and

iext = UTi = UT ·W ·U · v.

If iext(u) = 0, we call it a internal node, otherwise, we call it a boundary node.

Algorithms for Big Data (XIII) 5/11

We use i ∈ RE to denote the vector of currents, v ∈ RV to denote the vector of voltages.

It holds that
i = W ·U · v.

We use iext(u) to denote the amount of current entering u externally.

Then iext(u) =
∑

v∈N(u) i(u, v), and

iext = UTi = UT ·W ·U · v.

If iext(u) = 0, we call it a internal node, otherwise, we call it a boundary node.

Algorithms for Big Data (XIII) 5/11

We use i ∈ RE to denote the vector of currents, v ∈ RV to denote the vector of voltages.

It holds that
i = W ·U · v.

We use iext(u) to denote the amount of current entering u externally.

Then iext(u) =
∑

v∈N(u) i(u, v), and

iext = UTi = UT ·W ·U · v.

If iext(u) = 0, we call it a internal node, otherwise, we call it a boundary node.

Algorithms for Big Data (XIII) 5/11

We use i ∈ RE to denote the vector of currents, v ∈ RV to denote the vector of voltages.

It holds that
i = W ·U · v.

We use iext(u) to denote the amount of current entering u externally.

Then iext(u) =
∑

v∈N(u) i(u, v), and

iext = UTi = UT ·W ·U · v.

If iext(u) = 0, we call it a internal node, otherwise, we call it a boundary node.

Algorithms for Big Data (XIII) 5/11

We use i ∈ RE to denote the vector of currents, v ∈ RV to denote the vector of voltages.

It holds that
i = W ·U · v.

We use iext(u) to denote the amount of current entering u externally.

Then iext(u) =
∑

v∈N(u) i(u, v), and

iext = UTi = UT ·W ·U · v.

If iext(u) = 0, we call it a internal node, otherwise, we call it a boundary node.

Algorithms for Big Data (XIII) 5/11

We use i ∈ RE to denote the vector of currents, v ∈ RV to denote the vector of voltages.

It holds that
i = W ·U · v.

We use iext(u) to denote the amount of current entering u externally.

Then iext(u) =
∑

v∈N(u) i(u, v), and

iext = UTi = UT ·W ·U · v.

If iext(u) = 0, we call it a internal node, otherwise, we call it a boundary node.

Algorithms for Big Data (XIII) 5/11

Graph Laplacian

The matrix L ≜ UTWU is again graph Laplacian.

Consider the spectral decomposition of L:

L =
∑
i>1

λivivTi .

Using the decomposition, the equation becomes to

∑
i≥1

aivi =

(∑
i>1

λivivTi

)∑
i≥1

bivi

 ,

where iext =
∑

i≥1 aivi and v =
∑

i≥1 bivi.

Algorithms for Big Data (XIII) 6/11

Graph Laplacian
The matrix L ≜ UTWU is again graph Laplacian.

Consider the spectral decomposition of L:

L =
∑
i>1

λivivTi .

Using the decomposition, the equation becomes to

∑
i≥1

aivi =

(∑
i>1

λivivTi

)∑
i≥1

bivi

 ,

where iext =
∑

i≥1 aivi and v =
∑

i≥1 bivi.

Algorithms for Big Data (XIII) 6/11

Graph Laplacian
The matrix L ≜ UTWU is again graph Laplacian.

Consider the spectral decomposition of L:

L =
∑
i>1

λivivTi .

Using the decomposition, the equation becomes to

∑
i≥1

aivi =

(∑
i>1

λivivTi

)∑
i≥1

bivi

 ,

where iext =
∑

i≥1 aivi and v =
∑

i≥1 bivi.

Algorithms for Big Data (XIII) 6/11

Graph Laplacian
The matrix L ≜ UTWU is again graph Laplacian.

Consider the spectral decomposition of L:

L =
∑
i>1

λivivTi .

Using the decomposition, the equation becomes to

∑
i≥1

aivi =

(∑
i>1

λivivTi

)∑
i≥1

bivi

 ,

where iext =
∑

i≥1 aivi and v =
∑

i≥1 bivi.

Algorithms for Big Data (XIII) 6/11

Therefore, we must have a1 = 0, which means the current entering the network is equal
to the current leaving the network!

Define the Moore-Penrose pseudo-inverse of L

L+ =
∑
i>1

λ−1
i vivTi .

Given iext, we can compute v as long as we can compute L+.

We shift v so that
v = L+iext.

Algorithms for Big Data (XIII) 7/11

Therefore, we must have a1 = 0, which means the current entering the network is equal
to the current leaving the network!

Define the Moore-Penrose pseudo-inverse of L

L+ =
∑
i>1

λ−1
i vivTi .

Given iext, we can compute v as long as we can compute L+.

We shift v so that
v = L+iext.

Algorithms for Big Data (XIII) 7/11

Therefore, we must have a1 = 0, which means the current entering the network is equal
to the current leaving the network!

Define the Moore-Penrose pseudo-inverse of L

L+ =
∑
i>1

λ−1
i vivTi .

Given iext, we can compute v as long as we can compute L+.

We shift v so that
v = L+iext.

Algorithms for Big Data (XIII) 7/11

Therefore, we must have a1 = 0, which means the current entering the network is equal
to the current leaving the network!

Define the Moore-Penrose pseudo-inverse of L

L+ =
∑
i>1

λ−1
i vivTi .

Given iext, we can compute v as long as we can compute L+.

We shift v so that
v = L+iext.

Algorithms for Big Data (XIII) 7/11

Effective Resistance

We are now able to formally define effective resistance.

Reff(u, v) ≜ (eu − ev)TL+(eu − ev).

To see this, assuming one unit of current enters u and leaves v:

v = L+(eu − ev).

On the other hand,

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev).

Algorithms for Big Data (XIII) 8/11

Effective Resistance

We are now able to formally define effective resistance.

Reff(u, v) ≜ (eu − ev)TL+(eu − ev).

To see this, assuming one unit of current enters u and leaves v:

v = L+(eu − ev).

On the other hand,

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev).

Algorithms for Big Data (XIII) 8/11

Effective Resistance

We are now able to formally define effective resistance.

Reff(u, v) ≜ (eu − ev)TL+(eu − ev).

To see this, assuming one unit of current enters u and leaves v:

v = L+(eu − ev).

On the other hand,

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev).

Algorithms for Big Data (XIII) 8/11

Effective Resistance

We are now able to formally define effective resistance.

Reff(u, v) ≜ (eu − ev)TL+(eu − ev).

To see this, assuming one unit of current enters u and leaves v:

v = L+(eu − ev).

On the other hand,

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev).

Algorithms for Big Data (XIII) 8/11

Effective Resistance

We are now able to formally define effective resistance.

Reff(u, v) ≜ (eu − ev)TL+(eu − ev).

To see this, assuming one unit of current enters u and leaves v:

v = L+(eu − ev).

On the other hand,

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev).

Algorithms for Big Data (XIII) 8/11

Note that L+ is positive semi-definite, we can define

L+/2 =
∑
i>1

λ−1/2vi.

Then we can write

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev) = ∥L+/2(eu − ev)∥22.

Examples: Series and Parallel graphs.

Algorithms for Big Data (XIII) 9/11

Note that L+ is positive semi-definite, we can define

L+/2 =
∑
i>1

λ−1/2vi.

Then we can write

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev) = ∥L+/2(eu − ev)∥22.

Examples: Series and Parallel graphs.

Algorithms for Big Data (XIII) 9/11

Note that L+ is positive semi-definite, we can define

L+/2 =
∑
i>1

λ−1/2vi.

Then we can write

v(u) − v(v) = (eu − ev)Tv = (eu − ev)TL+(eu − ev) = ∥L+/2(eu − ev)∥22.

Examples: Series and Parallel graphs.

Algorithms for Big Data (XIII) 9/11

Approximating Effective Resistance

Directly computing effective resistance requires to compute L+, which is costly.

We can view L+/2eu and L+/2ev as two vectors in Rn and approximate their distance
using metric embedding technique.

Recall in Lecture 6, we learnt:

Theorem
For any 0 < ε < 1

2
and any positive integerm, consider a set ofm points S ⊆ Rn. There

exists an matrix A ∈ Rk×n where k = O
(
ε−2 logm

)
satisfying

∀x,y ∈ S, (1− ε)∥x− y∥ ≤ ∥Ax−Ay∥ ≤ (1+ ε)∥x− y∥.

Algorithms for Big Data (XIII) 10/11

Approximating Effective Resistance

Directly computing effective resistance requires to compute L+, which is costly.

We can view L+/2eu and L+/2ev as two vectors in Rn and approximate their distance
using metric embedding technique.

Recall in Lecture 6, we learnt:

Theorem
For any 0 < ε < 1

2
and any positive integerm, consider a set ofm points S ⊆ Rn. There

exists an matrix A ∈ Rk×n where k = O
(
ε−2 logm

)
satisfying

∀x,y ∈ S, (1− ε)∥x− y∥ ≤ ∥Ax−Ay∥ ≤ (1+ ε)∥x− y∥.

Algorithms for Big Data (XIII) 10/11

Approximating Effective Resistance

Directly computing effective resistance requires to compute L+, which is costly.

We can view L+/2eu and L+/2ev as two vectors in Rn and approximate their distance
using metric embedding technique.

Recall in Lecture 6, we learnt:

Theorem
For any 0 < ε < 1

2
and any positive integerm, consider a set ofm points S ⊆ Rn. There

exists an matrix A ∈ Rk×n where k = O
(
ε−2 logm

)
satisfying

∀x,y ∈ S, (1− ε)∥x− y∥ ≤ ∥Ax−Ay∥ ≤ (1+ ε)∥x− y∥.

Algorithms for Big Data (XIII) 10/11

Approximating Effective Resistance

Directly computing effective resistance requires to compute L+, which is costly.

We can view L+/2eu and L+/2ev as two vectors in Rn and approximate their distance
using metric embedding technique.

Recall in Lecture 6, we learnt:

Theorem
For any 0 < ε < 1

2
and any positive integerm, consider a set of m points S ⊆ Rn. There

exists an matrix A ∈ Rk×n where k = O
(
ε−2 logm

)
satisfying

∀x,y ∈ S, (1− ε)∥x− y∥ ≤ ∥Ax−Ay∥ ≤ (1+ ε)∥x− y∥.

Algorithms for Big Data (XIII) 10/11

In our proof of JLT, each entry of the matrix A is from N (0, 1/k).

We only need to show how to compute AL+/2 efficiently…

Let L ′ ≜ W1/2U, then (L ′)TL ′ = L+.

Therefore ∥L ′(eu − ev)∥22 = Reff(u, v).

We only need to solve d-linear equations in L to obtain AL ′L.

Algorithms for Big Data (XIII) 11/11

In our proof of JLT, each entry of the matrix A is from N (0, 1/k).

We only need to show how to compute AL+/2 efficiently…

Let L ′ ≜ W1/2U, then (L ′)TL ′ = L+.

Therefore ∥L ′(eu − ev)∥22 = Reff(u, v).

We only need to solve d-linear equations in L to obtain AL ′L.

Algorithms for Big Data (XIII) 11/11

In our proof of JLT, each entry of the matrix A is from N (0, 1/k).

We only need to show how to compute AL+/2 efficiently…

Let L ′ ≜ W1/2U, then (L ′)TL ′ = L+.

Therefore ∥L ′(eu − ev)∥22 = Reff(u, v).

We only need to solve d-linear equations in L to obtain AL ′L.

Algorithms for Big Data (XIII) 11/11

In our proof of JLT, each entry of the matrix A is from N (0, 1/k).

We only need to show how to compute AL+/2 efficiently…

Let L ′ ≜ W1/2U, then (L ′)TL ′ = L+.

Therefore ∥L ′(eu − ev)∥22 = Reff(u, v).

We only need to solve d-linear equations in L to obtain AL ′L.

Algorithms for Big Data (XIII) 11/11

In our proof of JLT, each entry of the matrix A is from N (0, 1/k).

We only need to show how to compute AL+/2 efficiently…

Let L ′ ≜ W1/2U, then (L ′)TL ′ = L+.

Therefore ∥L ′(eu − ev)∥22 = Reff(u, v).

We only need to solve d-linear equations in L to obtain AL ′L.

Algorithms for Big Data (XIII) 11/11

