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Review

Last week, we start the topic on faster algorithms for numerical linear algebra.

We learnt an almost-linear algorithm to approximate Matrix Multiplication.

Next, we introduced spectral graph theory.

We will see how to design almost-linear algorithms for graph problems using spectral
tools.
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Graph as a Matrix

Let G = (V, E) be an undirected graph on n vertices without self-loops and parallel
edges.

Its adjacency matrix A(G) = (aij)i,j∈[n] is symmetric.

We are interested in the eigenvalues and eigenvectors of A…

For symmetric matrices, the spectrum is well-structured.
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Spectral Decomposition Theorem

Theorem
An n× n symmetric matrix A has n real eigenvalues λ1, . . . , λn with corresponding
eigenvectors v1, . . . , vn which are orthonormal. Moreover, it holds that

A = VΛVT ,

where V =
[
v1 v2 . . . vn

]
and Λ = diag(λ1, . . . , λn).
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Graph Laplacian for Regular Graphs

In the following, we assume the graph G is d-regular. We will see how to generalize to
irregular graphs later today.

Sometimes it is convenient to shift and scale the eigenvalues of A.

The Laplacian of G is L ≜ dI−A.

The normalized Laplacian of G is N ≜ L
d
= I− 1

d
A.

We already verified the following identity:

∀x ∈ R[n] : xTLx =
∑

{u,v}∈E

(x(u) − x(v))2 .
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RayleighQuotient

Let ⟨·, ·⟩ denote the ordinary inner product of two vectors, i.e., ⟨x,y⟩ = xTy.

Let M ∈ Rn×n be a matrix. The Rayleigh quotient is

∀x ∈ Rn, RM(x) =
⟨x,Mx⟩
⟨x,x⟩

.

It is clear that if λ is an eigenvalue of M with eigenvector v, then

RM(v) =
⟨v,Mv⟩
⟨v, v⟩

=
⟨v, λv⟩
⟨v, v⟩

= λ.
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Courant-Fischer Theorem

Let M be a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.

Let v1, . . . , vn be corresponding eigenvectors.

Theorem (Courant-Fischer Theorem)

λk = min
k-dim S⊆Rn

max
x∈S\{0}

RM(x)

Corollary

λ1 = min
x∈Rn\{0}

RM(x), λn = max
x∈Rn\{0}

RM(x).
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Proof

We first show that
min

k-dim S⊆Rn
max

x∈S\{0}
RM(x) ≤ λk.

We construct a k-dim space S such that any x ∈ S \ {0} satisfies RM(x) ≤ λk.

S = span(v1, . . . , vk) satisfies our need.

We then prove that any k-dim S ⊆ Rn, there exists some x ∈ S \ {0} satisfying
RM(x) ≥ λk.

Choose nonzero x ∈ X ∩ span(vk, . . . , vn).
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Eigenvalues for Laplacians

Recall L is the Laplacian and N is the normalized Laplacian.

Theorem
Assume λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of N, then
▶ λ1 = 0;
▶ λn ≤ 2 and λn = 2 if and only if one of components of G is bipartite;
▶ λk = 0 if and only if G has at least k components.

Theorem

λk = max
x⊥span(v1,...,vk−1)

x̸=0

RM(x)
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Laplacians for General Graphs

For a not necessarily simple graph G with adjacency matrix A, define its Laplacian as

L = D−A

where D = diag(deg(v1), . . . , deg(vn)).

The normalized Laplacian is

N = D− 1
2LD− 1

2 = I−D− 1
2AD− 1

2 .

Both L and N are positive semi-definite.
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RayleighQuotient (for General normalized Laplacian)

Let N = D− 1
2LD− 1

2 be a normalized Laplacian, then

RN(x) =
⟨x,

(
D− 1

2LD− 1
2

)
x⟩

⟨x,x⟩
=

⟨D− 1
2x, LD− 1

2x⟩
⟨D− 1

2x, DD− 1
2x⟩

=
⟨y, Ly⟩
⟨y, Dy⟩

,

where y = D− 1
2x.

It is an exercise to prove the theorem in the previous slide for general graphs.

It is useful to view L as an operator, namely

Lx(i) = deg(i)x(i) −
∑
{i,j}∈E

x(j).
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Examples

The Laplacian of complete graph Kn: E =
([n]
2

)
.

▶ λ1 = 0, λ2 = λ3 = · · · = λn = n;
▶ v1 = 1, v2, v3, . . . , vn can be a basis of span(1)⊥.

The Laplacian of a star Sn: E = {{1, j} : 2 ≤ j ≤ n}.
▶ λ0 = 0, λ1 = λ2 = · · · = λn−1 = 1, λn = n;
▶ v1 = 1, vi = ei − ei+1 for 2 ≤ i < n, vn = (n− 1)e1 −

∑
2≤j≤n ej.
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RandomWalk (on Regular graphs)

Let G = (V, E) be a d-regular graph.

One can naturally define a random walk: standing at vertex i, move to one of its
randomly chosen neighbour j.

If we use denote P = (pij) such that pij =

{
1/d if {i, j} ∈ E

0 otherwise
, then

xt+1 = PTxt,

where xt ∈ [0, 1][n] is the distribution of the location of you at time t.

We can make P lazy by defining P̃ = 1
2
(I+ P).
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0 otherwise
, then
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What is the spectrum of P̃?

P̃ is simply 1
2

(
I+ A

d

)
, so it satisfies

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn = 1.

A distribution x is called stable if x = P̃Tx.

Theorem
If G is connected, then xt converges to a stable distribution whatever the initial one is.

Proof by Spectral Decomposition Theorem.
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