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REVIEW

Last week, we start the topic on faster algorithms for numerical linear algebra.
We learnt an almost-linear algorithm to approximate Matrix Multiplication.
Next, we introduced spectral graph theory.

We will see how to design almost-linear algorithms for graph problems using spectral

tools.
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GRAPH AS A MATRIX

Let G = (V, E) be an undirected graph on n vertices without self-loops and parallel
edges.

Its adjacency matrix A(G) = (ajj)ijem) is symmetric.
We are interested in the eigenvalues and eigenvectors of A...

For symmetric matrices, the spectrum is well-structured.
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SPECTRAL DECOMPOSITION THEOREM

Theorem
An n X n symmetric matrix A has n real eigenvalues A1, ..., A, with corresponding
eigenvectors vi,..., vy which are orthonormal. Moreover, it holds that

A =VAVT

where V = [v1 \') ...vn] and A = diag(Aq,...,An).
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GRAPH LAPLACIAN FOR REGULAR GRAPHS

In the following, we assume the graph G is d-regular. We will see how to generalize to
irregular graphs later today.

Sometimes it is convenient to shift and scale the eigenvalues of A.
The Laplacian of G is L = dI — A.

A.

o=

The normalized Laplacian of G is N = % =1-
We already verified the following identity:

vx e RM:ix'Ix = ) (x(u) —x(v))’.
{u,v}€E
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RAYLEIGH QUOTIENT

Let (-,-) denote the ordinary inner product of two vectors, i.e., (x,y) = x"y.

Let M € R™*™ be a matrix. The Rayleigh quotient is

Vx € Rn, Rm(x) = W

It is clear that if A is an eigenvalue of M with eigenvector v, then
Ry (v) = (v, Mv) _ (v, AV) _a

(vy,v) (v,v)
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COURANT-FISCHER THEOREM

Let M be a symmetric matrix with eigenvalues A7 <Ay < -+ < Ay

Let vy, ..., vy be corresponding eigenvectors.
Theorem (Courant-Fischer Theorem)
Ak = i R
K k—diglgéR“ xlens%ﬁ)} M)
Corollary

A = min Rm(x A = max Rm(x).
1= Jin m(x), An e m(x)
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Proor

We first show that

i R < Ak.
S ey MO = M

We construct a k-dim space S such that any x € S\ {0} satisfies Ry (x) < Ay.

S = span(vy, ..., vy) satisfies our need.

We then prove that any k-dim S C R™, there exists some x € S \ {0} satisfying
Rm(x) > Ak.

Choose nonzero x € X N span(vy, ..., Vyn).
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EIGENVALUES FOR LAPLACIANS

Recall L is the Laplacian and N is the normalized Laplacian.

Theorem

Assume A1 < Ay < --- < Ay, be the eigenvalues of N, then
> A =0;
> An < 2and A, =2 if and only if one of components of G is bipartite;
> Ay = 0if and only if G has at least k components.

Theorem

>
=
I

max Rm (x)
xLspan(vy,...,vik_1)
x#0
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LAPLACIANS FOR GENERAL GRAPHS

For a not necessarily simple graph G with adjacency matrix A, define its Laplacian as
L=D—-A

where D = diag(deg(v1),...,deg(vn)).

The normalized Laplacian is

N=D2lD z=I—-D 2AD 2.

Both L and N are positive semi-definite.
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RAYLEIGH QUOTIENT (FOR GENERAL NORMALIZED LAPLACIAN)

Let N =D 2LD" 2 be a normalized Laplacian, then

Ry (x) = x (Df%LD7%>X> _ (D% ID72x) _ (y,Ly)
MR {x,x) ~ (D~2x,DD"7x) (¥,Dy)’

1
wherey = D7 2x.
It is an exercise to prove the theorem in the previous slide for general graphs.

It is useful to view L as an operator, namely

Lx(i) = deg(i)x(i) — > x(j).

{i,jlek
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ExAMPLES

The Laplacian of complete graph K;;: E = ([TZL]).
>N =0A =A== Ag=my

» v; =1,v2,V3,...,Vy can be a basis of span(1)+.

The Laplacian of a star Sp: E = {{1,j} : 2 <j <n}
> AM=0AM=N==A =1 Ay =mn

> vi=1Lvi=e —efor2<i<nvp=(Mn—1)e _ZZ<j<nej'
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RAaNDOM WALK (ON REGULAR GRAPHS)

Let G = (V, E) be a d-regular graph.

One can naturally define a random walk: standing at vertex i, move to one of its
randomly chosen neighbour j.

/4 iffLjIeE

0 otherwise

If we use denote P = (py;) such that py; = { hen

Xt41 = PTXt»
where x; € [0, 11 is the distribution of the location of you at time t.

We can make P lazy by defining P = % (I+P).
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What is the spectrum of P?
P is simply % (I+ %), so it satisfies

0SS <A =1

A distribution x is called stable if x = PTx.

Theorem

If G is connected, then x¢ converges to a stable distribution whatever the initial one is.

Proof by Spectral Decomposition Theorem.
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