Algorithms for Big Data (XI)

Chihao Zhang

Shanghai Jiao Tong University

Nov. 29, 2019

REVIEW

Last week, we start the topic on faster algorithms for numerical linear algebra.

We learnt an almost-linear algorithm to approximate Matrix Multiplication.

Next, we introduced spectral graph theory.

We will see how to design almost-linear algorithms for graph problems using spectral tools.

GRAPH AS A MATRIX

Let G = (V, E) be an undirected graph on n vertices without self-loops and parallel edges.

Its adjacency matrix $A(G)=(\alpha_{ij})_{i,j\in [n]}$ is symmetric.

We are interested in the eigenvalues and eigenvectors of A...

For symmetric matrices, the spectrum is well-structured.

SPECTRAL DECOMPOSITION THEOREM

Theorem

An $n \times n$ symmetric matrix A has n real eigenvalues $\lambda_1, \ldots, \lambda_n$ with corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ which are orthonormal. Moreover, it holds that

$$A = V\Lambda V^{\mathsf{T}},$$

where
$$V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots \mathbf{v}_n \end{bmatrix}$$
 and $\Lambda = diag(\lambda_1, \dots, \lambda_n).$

GRAPH LAPLACIAN FOR REGULAR GRAPHS

In the following, we assume the graph G is $\frac{d}{regular}$. We will see how to generalize to irregular graphs later today.

Sometimes it is convenient to shift and scale the eigenvalues of A.

The Laplacian of G is $L \triangleq dI - A$.

The normalized Laplacian of G is $N \triangleq \frac{L}{d} = I - \frac{1}{d}A$.

We already verified the following identity:

$$\forall \mathbf{x} \in \mathbb{R}^{[n]} : \mathbf{x}^T L \mathbf{x} = \sum_{\{\mathbf{u}, \mathbf{v}\} \in E} (x(\mathbf{u}) - x(\mathbf{v}))^2.$$

Algorithms for Big Data (XI)

RAYLEIGH QUOTIENT

Let $\langle \cdot, \cdot \rangle$ denote the ordinary inner product of two vectors, i.e., $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^\mathsf{T} \mathbf{y}$.

Let $M \in \mathbb{R}^{n \times n}$ be a matrix. The Rayleigh quotient is

$$\forall \mathbf{x} \in \mathbb{R}^n, \quad \mathsf{R}_\mathsf{M}(\mathbf{x}) = \frac{\langle \mathbf{x}, \mathsf{M}\mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

It is clear that if λ is an eigenvalue of M with eigenvector \mathbf{v} , then

$$R_{M}(\mathbf{v}) = \frac{\langle \mathbf{v}, M\mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} = \frac{\langle \mathbf{v}, \lambda \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} = \lambda.$$

Algorithms for Big Data (XI)

COURANT-FISCHER THEOREM

Let M be a symmetric matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$.

Let v_1, \ldots, v_n be corresponding eigenvectors.

Theorem (Courant-Fischer Theorem)

$$\lambda_k = \min_{k\text{-}d\text{im }S\subseteq\mathbb{R}^n} \max_{\boldsymbol{x}\in S\setminus\{\boldsymbol{0}\}} R_M(\boldsymbol{x})$$

Corollary

$$\lambda_1 = \min_{\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}} R_{\mathsf{M}}(\mathbf{x}), \quad \lambda_n = \max_{\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}} R_{\mathsf{M}}(\mathbf{x}).$$

Proof

We first show that

$$\min_{k\text{-}d\text{im }S\subseteq\mathbb{R}^n}\max_{\boldsymbol{x}\in S\setminus\{\boldsymbol{0}\}}R_M(\boldsymbol{x})\leq \lambda_k.$$

We construct a k-dim space S such that any $\mathbf{x} \in S \setminus \{\mathbf{0}\}$ satisfies $R_M(\mathbf{x}) \leq \lambda_k$.

 $S = span(\mathbf{v}_1, \dots, \mathbf{v}_k)$ satisfies our need.

We then prove that any k-dim $S \subseteq \mathbb{R}^n$, there exists some $\mathbf{x} \in S \setminus \{\mathbf{0}\}$ satisfying $R_M(\mathbf{x}) \ge \lambda k$.

Choose nonzero $\mathbf{x} \in X \cap \text{span}(\mathbf{v}_k, \dots, \mathbf{v}_n)$.

EIGENVALUES FOR LAPLACIANS

Recall L is the Laplacian and N is the normalized Laplacian.

Theorem

Assume $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of N, then

- $ightharpoonup \lambda_1 = 0;$
- $\lambda_n \le 2$ and $\lambda_n = 2$ if and only if one of components of G is bipartite;
- $\lambda_k = 0$ if and only if G has at least k components.

Theorem

$$\lambda_k = \max_{\substack{\mathbf{x} \perp \text{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1}) \\ \mathbf{x} \neq 0}} R_{M}(\mathbf{x})$$

LAPLACIANS FOR GENERAL GRAPHS

For a not necessarily simple graph G with adjacency matrix A, define its Laplacian as

$$L = D - A$$

where $D = diag(deg(v_1), \dots, deg(v_n))$.

The normalized Laplacian is

$$N = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}.$$

Both L and N are positive semi-definite.

RAYLEIGH QUOTIENT (FOR GENERAL NORMALIZED LAPLACIAN)

Let $N = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$ be a normalized Laplacian, then

$$R_N(\mathbf{x}) = \frac{\langle \mathbf{x}, \left(D^{-\frac{1}{2}}LD^{-\frac{1}{2}}\right)\mathbf{x}\rangle}{\langle \mathbf{x}, \mathbf{x}\rangle} = \frac{\langle D^{-\frac{1}{2}}\mathbf{x}, LD^{-\frac{1}{2}}\mathbf{x}\rangle}{\langle D^{-\frac{1}{2}}\mathbf{x}, DD^{-\frac{1}{2}}\mathbf{x}\rangle} = \frac{\langle \mathbf{y}, L\mathbf{y}\rangle}{\langle \mathbf{y}, D\mathbf{y}\rangle},$$

where $\mathbf{y} = D^{-\frac{1}{2}}\mathbf{x}$.

It is an exercise to prove the theorem in the previous slide for general graphs.

It is useful to view L as an operator, namely

$$L\mathbf{x}(\mathfrak{i}) = \deg(\mathfrak{i})x(\mathfrak{i}) - \sum_{\{\mathfrak{j},\mathfrak{j}\}\in E} x(\mathfrak{j}).$$

EXAMPLES

The Laplacian of complete graph K_n : $E = {n \choose 2}$.

- $\lambda_1 = 0, \lambda_2 = \lambda_3 = \cdots = \lambda_n = n;$
- $\mathbf{v}_1 = \mathbf{1}, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n$ can be a basis of span $(\mathbf{1})^{\perp}$.

The Laplacian of a star S_n : $E = \{\{1, j\} : 2 \le j \le n\}$.

- $\lambda_0 = 0, \lambda_1 = \lambda_2 = \cdots = \lambda_{n-1} = 1, \lambda_n = n;$
- ▶ $v_1 = 1$, $v_i = e_i e_{i+1}$ for $2 \le i < n$, $v_n = (n-1)e_1 \sum_{2 \le j \le n} e_j$.

RANDOM WALK (ON REGULAR GRAPHS)

Let G = (V, E) be a d-regular graph.

One can naturally define a random walk: standing at vertex i, move to one of its randomly chosen neighbour j.

If we use denote
$$P = (p_{ij})$$
 such that $p_{ij} = \begin{cases} 1/d & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise} \end{cases}$, then $\mathbf{x}_{t+1} = P^T \mathbf{x}_t$,

where $\mathbf{x}_t \in [0, 1]^{[n]}$ is the distribution of the location of you at time t.

We can make P lazy by defining $\tilde{P} = \frac{1}{2} \left(I + P \right)$.

What is the spectrum of \tilde{P} ?

 \tilde{P} is simply $\frac{1}{2}\left(I+\frac{A}{d}\right)\!,$ so it satisfies

$$0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n = 1$$
.

A distribution \mathbf{x} is called stable if $\mathbf{x} = \tilde{P}^T \mathbf{x}$.

Theorem

If G is connected, then \mathbf{x}_t converges to a stable distribution whatever the initial one is.

Proof by Spectral Decomposition Theorem.