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ALGORITHMS

We learnt many efficient algorithms before...

» Dijkstra algorithm, Floyd algorithm, Blossom algorithm...

» These algorithms costs polynomial-time.

What if the input is too large to store?

Throw some of them away! sublinear space algorithms.
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STREAMING MODEL

The input is a sequence o = {ay, as, . . ., a,) where each q; € [n]
One can process the input stream using at most s bits of memory
We say the algorithm is sublinear if s = o(min {m, n}).

We can ask

» How many numbers (what is m?)
How many distinct numbers?
What is the median of ¢?

>
>
> What is the most frequent number?
>
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How MANY NUMBERS?
We can maintain a counter k. Whenever one reads a number a;, let k= k+ 1.
How many bits of memory needed? log, m.
Can be improved to o(log m)?
Impossible (Why?)
Possible if allow approximation:

For every ¢ > 0, compute a number m such that

313

1-¢< <1l+e.
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MORRIS’ ALGORITHM

Algorithm Morris’ Algorithm for Counting Elements

Init:

A variable X « 0.

On Input y:

increase X with probability 27X,

Output:
Output m = 2X - 1.

» This is a randomized algorithm.
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MORRIS’ ALGORITHM

Algorithm Morris’ Algorithm for Counting Elements

Init:

A variable X « 0.

On Input y:

increase X with probability 27X,

Output:
Output m = 2X - 1.

» This is a randomized algorithm.

» Therefore we look at the expectation of its output.
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The output m is a random variable, we prove that its expectation E [m] = m by induction
on m.

Algorithms for Big Data (1) 8/19



ANALYSIS

The output m is a random variable, we prove that its expectation E [m] = m by induction
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ANALYSIS

The output m is a random variable, we prove that its expectation E [m] = m by induction
on m.

Since X =1 when m = 1, we have E [m] = 1.

Assume it is true for smaller m, let X; denote the value of X after processing ith input.
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ANALYSIS (CONT’D)
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(induction hypothesis)
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It is now clear that Morris’ algorithm is an unbiased estimator for m.
It uses approximately O(loglog m) bits of memory.

However, for a practical randomized algorithm, we further require its output to
concentrate on the expectation.

That is, we want to establish concentration inequality of the form
Pr(|m—m| > ¢] <6,
fore, 6 > 0.

For fixed ¢, the smaller § is, the better the algorithm will be.
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We need some probabilistic tools to establish the concentration inequality.
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CONCENTRATION

We need some probabilistic tools to establish the concentration inequality.

Markov’s inequality
For every nonnegative random variable X and every a > 0, it holds that
_EX

Pr(X>ad <
a
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CONCENTRATION

We need some probabilistic tools to establish the concentration inequality.

Markov’s inequality

For every nonnegative random variable X and every a > 0, it holds that

E[X

Pr(X>ad <

Chebyshev’s inequality

For every random variable X and every a > 0, it holds that

Var [X]

Pr{X-E[X|2d < —

a
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CONCENTRATION (CONT’D)

In order to apply Chebyshev’s inequality, we have to compute the variance of m.

Lemma

2 3 3
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CONCENTRATION (CONT’D)

In order to apply Chebyshev’s inequality, we have to compute the variance of m.

Lemma
2 3 3
E|(2%) | =2mP+ Sm+1.
[ ] 5 + M +
We can prove the claim using an induction argument similar to our proof for the

expectation.

Therefore,
2

Var [fi] = E [#?] - E [m]* = E [(QXm ) 1)2} 'y m?
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Applying Chebyshev’s inequality, we obtain for every ¢ > 0,

Pr{|m-m| > em] < —.
r[|m—m| > em| 5.7
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Applying Chebyshev’s inequality, we obtain for every ¢ > 0,

Pr (|7 - m| > em] < —
rm—-m =zem < —.
262

Can we improve the concentration?

Two common tricks work here.
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AVERAGING TRICK

The Chebyshev’s inequality tells us that we can improve the concentration by reducing
the variance.
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The Chebyshev’s inequality tells us that we can improve the concentration by reducing
the variance.

Note that variance satisfies
> Var|a- X| = a® - Var [X;
» Var [X+ Y] = Var [X] + Var [Y] for independent X and Y.
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AVERAGING TRICK
The Chebyshev’s inequality tells us that we can improve the concentration by reducing
the variance.

Note that variance satisfies
> Var|a- X| = a® - Var [X;
» Var [X+ Y] = Var [X] + Var [Y] for independent X and Y.

We can independently run Morris algorithm t time in parallel, and let the outputs be
my, ..., m.

t m:
The final output is m* := @

Apply Chebyshev’s inequality to m*:

Pr(|m" —m| > em] <

t-2e2’
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For t > we have

—225a N
r(|m" —m|>em| <6.

log log n

Our algorithm uses O( ) bits of memory.
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For t > ﬁ, we have

Pr|m"—m| > em] < 6.

. loglogn .
Our algorithm uses O( g€25g ) bits of memory.

A trade-off between the quality of the randomized algorithm and the consumption of

memory space.
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3

We choose t = 57

in the previous algorithm.
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3

We choose t = 5% in the previous algorithm.

Independently run the algorithm s times in parallel, and let the outputs be
ot

o~
my, My, ..., mg.
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THE MEDIAN TRICK

We choose t = % in the previous algorithm.

Independently run the algorithm s times in parallel, and let the outputs be
my, my, ..., m;.

It holds that for every i=1,...,s,

Output the median of mj, ..., m; (=: m™).
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CHERNOFF BOUND

Chernoff bound

Let X1,..., X, be independent random variables with X; € [0, 1] forevery i=1,...,n.
Let X= )7, Xi. Then for every 0 < ¢ < 1, it holds that

52
Pr[|X—-E[X]| > ¢-E[X] S2exp(— Ii))[)(])
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ANALYSIS OF THE MEDIAN TRICK

Forevery i=1,...,s, we let Y; be the indicator of the (good) event

|r’ﬁf—m|<£-m.
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Forevery i=1,...,s, we let Y; be the indicator of the (good) event
|rAnjf - m| <e-m.

Then Y:= 3%, V;satisfies E[Y] > Zs.
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ANALYSIS OF THE MEDIAN TRICK

Forevery i=1,...,s, we let Y; be the indicator of the (good) event
|m: —m| <e-m.
Then Y:= 3%, V;satisfies E[Y] > Zs.

If the median m™* is bad (namely |m** — m| > & - m), then at least half of m?’s are bad.
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ANALYSIS OF THE MEDIAN TRICK

Forevery i=1,...,s, we let Y; be the indicator of the (good) event
|r71ji‘ - m| <ée-m.
Then Y:= 3%, V;satisfies E[Y] > Zs.
If the median m™* is bad (namely |m** — m| > & - m), then at least half of m?’s are bad.
Equivalently, Y < %s.

By Chernoff bound,

Pr[lY—E[Y]I > s] < 2exp (—ﬁ).

| =
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Therefore, for t = O(%) and s = O(log %), we have

£

Pr[|m™ —m| > em| < 6.
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Therefore, for t = O(g%) and s = O(log %), we have

Pr[|m™ —m| > em| < 6.

We use O (%2 : log% -loglog n) bits of memory.
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