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Course Information

▶ Instructor: Chihao Zhang
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Algorithms

We learnt many efficient algorithms before…
▶ Dijkstra algorithm, Floyd algorithm, Blossom algorithm…
▶ These algorithms costs polynomial-time.

What if the input is too large to store?

Throw some of them away! sublinear space algorithms.
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A programmer for routers

A router has limited memory, but needs to process large data…

The router can monitor the id of devices connecting to it.

▶ How many numbers?
▶ How many distinct numbers?
▶ What is the most frequent number?
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Streaming Model

The input is a sequence σ = ⟨a1, a2, . . . , am⟩ where each ai ∈ [n]

One can process the input stream using at most s bits of memory

We say the algorithm is sublinear if s = o(min {m, n}).

We can ask
▶ How many numbers (what is m?)
▶ How many distinct numbers?
▶ What is the median of σ?
▶ What is the most frequent number?
▶ …
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How many numbers?

We can maintain a counter k. Whenever one reads a number ai, let k = k+ 1.

How many bits of memory needed? log2m.

Can be improved to o(logm)?

Impossible (Why?)

Possible if allow approximation:

For every ε > 0, compute a number m̂ such that

1 − ε ≤ m̂
m
≤ 1 + ε .
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Morris’ algorithm

Algorithm Morris’ Algorithm for Counting Elements
Init:
A variable X← 0.

On Input y:
increase X with probability 2−X.

Output:
Output m̂ = 2X − 1.

▶ This is a randomized algorithm.
▶ Therefore we look at the expectation of its output.
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Analysis

The output m̂ is a random variable, we prove that its expectation E [m̂] = m by induction
on m.

Since X = 1 when m = 1, we have E [m̂] = 1.

Assume it is true for smaller m, let Xi denote the value of X after processing ith input.
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Analysis (cont’d)

E [m̂] = E
[
2Xm

]
− 1

=
m∑
i=0

Pr [Xm = i] · 2i − 1

=
m∑
i=0

(
Pr [Xm−1 = i] (1 − 2−i) + Pr [Xm−1 = i − 1] · 21−i

)
· 2i − 1

=
m−1∑
i=0

Pr [Xm−1 = i]
(
2i + 1

)
− 1

= E
[
2Xm−1

]
= m (induction hypothesis)
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It is now clear that Morris’ algorithm is an unbiased estimator for m.

It uses approximately O(log logm) bits of memory.

However, for a practical randomized algorithm, we further require its output to
concentrate on the expectation.

That is, we want to establish concentration inequality of the form

Pr [|m̂ −m| > ε] ≤ δ ,

for ε,δ > 0.

For fixed ε , the smaller δ is, the better the algorithm will be.
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Concentration

We need some probabilistic tools to establish the concentration inequality.

Markov’s inequality
For every nonnegative random variable X and every a ≥ 0, it holds that

Pr [X ≥ a] ≤ E [X]
a
.

Chebyshev’s inequality
For every random variable X and every a ≥ 0, it holds that

Pr [|X − E [X]| ≥ a] ≤ Var [X]
a2

.
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Concentration (cont’d)

In order to apply Chebyshev’s inequality, we have to compute the variance of m̂.

Lemma

E
[(
2Xm

)2]
=

3

2
m2 +

3

2
m+ 1.

We can prove the claim using an induction argument similar to our proof for the
expectation.

Therefore,

Var [m̂] = E
[
m̂2

]
− E [m̂]2 = E

[(
2Xm − 1

)2]
−m2 ≤ m2

2
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Applying Chebyshev’s inequality, we obtain for every ε > 0,

Pr [|m̂ −m| ≥ εm] ≤ 1

2ε2
.

Can we improve the concentration?

Two common tricks work here.
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Averaging trick

The Chebyshev’s inequality tells us that we can improve the concentration by reducing
the variance.

Note that variance satisfies
▶ Var [a · X] = a2 · Var [X];
▶ Var [X+ Y] = Var [X] + Var [Y] for independent X and Y.

We can independently run Morris algorithm t time in parallel, and let the outputs be
m̂1, . . . , m̂t.

The final output is m̂∗ :=
∑t

i=1 m̂i

t .

Apply Chebyshev’s inequality to m̂∗:

Pr [|m̂∗ −m| ≥ εm] ≤ 1

t · 2ε2 .
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For t ≥ 1
2ε2δ , we have

Pr [|m̂∗ −m| ≥ εm] ≤ δ .

Our algorithm uses O
(
log log n
ε2δ

)
bits of memory.

A trade-off between the quality of the randomized algorithm and the consumption of
memory space.
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The Median trick

We choose t = 3
2ε2 in the previous algorithm.

Independently run the algorithm s times in parallel, and let the outputs be
m̂∗1, m̂

∗
2, . . . , m̂

∗
s .

It holds that for every i = 1, . . . , s,

Pr
[��m̂∗i −m�� ≥ εm

]
≤ 1

3
.

Output the median of m̂∗1, . . . , m̂
∗
s (=: m̂∗∗).
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Chernoff bound

Chernoff bound
Let X1, . . . ,Xn be independent random variables with Xi ∈ [0, 1] for every i = 1, . . . , n.
Let X =

∑n
i=1 Xi. Then for every 0 < ε < 1, it holds that

Pr [|X − E [X]| > ε · E [X]] ≤ 2 exp
(
−ε

2E [X]
3

)
.
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Analysis of the median trick

For every i = 1, . . . , s, we let Yi be the indicator of the (good) event��m̂∗i −m�� < ε · m.

Then Y :=
∑s

i=1 Yi satisfies E [Y] ≥ 2
3s.

If the median m̂∗∗ is bad (namely |m̂∗∗ −m| ≥ ε · m), then at least half of m̂∗i ’s are bad.

Equivalently, Y ≤ 1
2s.

By Chernoff bound,

Pr
[
|Y − E [Y]| ≥ 1

6
s
]
≤ 2 exp

(
− s
108

)
.
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Therefore, for t = O
(
1
ε2

)
and s = O

(
log 1

δ

)
, we have

Pr [|m̂∗∗ −m| ≥ εm] < δ .

We use O
(
1
ε2 · log

1
δ · log log n

)
bits of memory.
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