
[AI2615 Lecture 1] Word-RAM, Big-O notation, Fi-
bonacci Numbers

1 The Computation Model

We already know from the introduction that what we mean by a “problem”,
and what is an “algorithm”. Consider the problem of finding the maximum
number from 𝑛 numbers. We can write the following pseudo-code:

Algorithm: Find the Max Number

Input : 𝑛 nonnegative numbers 𝑎[1], 𝑎[2], . . . , 𝑎[𝑛].
Output: max𝑖∈[𝑛]𝑎[𝑖].

max← 0;
for 𝑖 ← 1 to 𝑛 do

if 𝑎[𝑖] > max then max← 𝑎[𝑖];
end
return max;

What is the running time of the algorithm? It really depends on the
computation model we are working on.

In this course, we will work on the so-called word-RAM [Wik21]. The
basic cell our algorithm can operate on is a𝑤-bit “word”. The memory
consists of at most 2𝑚 cells and each cell can store a word, namely a number
in {0, 1, 2𝑚 − 1}. We can access each cell of the memory in constant time
and the basic arithmetic/logical operations (+,−,×, /, boolean comparison,
etc) on words cost constant time as well. For example, in the algorithm
above, we can fetch the value of 𝑎[𝑖] from the memory and compare it
with the value of the variable “max” in constant time. This is not far from
practice since nowadays most CPUs have word size 64 and the memory is
usually much less than 264 bits.

2 The Big-O notation

In word-RAM, the above algorithm for finding max number cost at most
𝑐 · 𝑛 operations for some constant 𝑐 > 0. In algorithm analysis, it is more
convenient to drop the constant 𝑐 and use the big-O notations to represent
the running time of an algorithm. This is in fact consistent with what we

learnt in the analysis: For two functions
𝑓 , 𝑔 : ℝ → ℝ>0, 𝑓 = 𝑂 (𝑔) ⇐⇒
lim𝑥→∞ 𝑓 /𝑔 ≤ 𝐶 for some constant𝐶 > 0.

Let 𝑓 , 𝑔 : ℕ → ℕ be two functions defined on ℕ. We say 𝑓 = 𝑂 (𝑔) if
for some constant 𝑐 > 0, 𝑓 (𝑛) ≤ 𝑐 · 𝑔(𝑛) holds for every 𝑛 ∈ ℕ. This is in
fact a “slack” way to express 𝑓 ≤ 𝑔 ignoring constant multiples. We write
𝑓 = Θ(𝑔) iff 𝑓 = 𝑂 (𝑔) and 𝑔 = 𝑂 (𝑓 ).

We also say 𝑓 = Ω(𝑔) if 𝑔 = 𝑂 (𝑓 ). Our slack way to express 𝑓 < 𝑔 is
to use the little-O notation. We say 𝑓 = 𝑜 (𝑔) if for every 𝑐 > 0, there exists



[ai2615 lecture 1] word-ram, big-o notation, fibonacci numbers 2

some 𝑛0 ∈ ℕ such that 𝑓 (𝑛) < 𝑐 · 𝑔(𝑛) for any 𝑛 > 𝑛0. We say 𝑓 = 𝜔 (𝑔) if
𝑔 = 𝑜 (𝑓 ). In analysis, 𝑓 = 𝑜 (𝑔) if lim𝑥→∞ 𝑓 /𝑔 = 0

You can find examples and practice the use of these notations in the
textbook. Here, we emphasis that 𝑛 log𝑛 is more close to 𝑛 than 𝑛2 since
𝑛 log𝑛 = 𝑜 (𝑛1.00001).

3 Computing Fibonacci Numbers

We’re now ready to take our first steps into the world of algorithms. The
Fibonacci numbers are a well-known sequence defined as

Fib(𝑛) =


0 if 𝑛 = 0;

1 if 𝑛 = 1;

Fib(𝑛 − 1) + Fib(𝑛 − 2) if 𝑛 ≥ 2.

The first few numbers in the sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

In fact, Fib(𝑛) grows very fast, at a rate exponential in 𝑛. One can prove
that Fib(𝑛) ≥ 1.6𝑛 for large 𝑛. Now we design algorithms to compute
Fib(𝑛).

The first algorithm simply follows from the definition.

function fib1(int n)
if 𝑛 = 0 then return 0;
if 𝑛 = 1 then return 1;
return fib1(n-1)+fib1(n-2);

end

fib1 is obviously correct. Let us bound its running time. Let 𝑇1 (𝑛) de-
note the number of steps fib1(𝑛) takes to output. Then clearly 𝑇1 (0) = 1,
𝑇1 (1) = 2 and for 𝑛 ≥ 2, 𝑇1 (𝑛) ≥ 𝑇1 (𝑛 − 1) +𝑇1 (𝑛 − 2) + 3. Comparing to the
definition of Fib, we can conclude that for every 𝑛 ≥ 0, 𝑇 (𝑛) ≥ Fib(𝑛). So
for large 𝑛, 𝑇1 (𝑛) > 1.6𝑛 , which is exponential in 𝑛.

fib1 is inefficient since many of its computations are repeated. We can



[ai2615 lecture 1] word-ram, big-o notation, fibonacci numbers 3

improve it by storing the value already computed.

function fib2(int n)
create an array 𝑓 [0, . . . , 𝑛];
𝑓 [0] ← 0;
𝑓 [1] ← 1;
for 𝑘 ← 2 to 𝑛 do

1 𝑓 [𝑘] ← 𝑓 [𝑘 − 1] + 𝑓 [𝑘 − 2];
end
return 𝑓 [𝑛];

end

How many steps fib2 takes before termination? Let us denote this
number by 𝑇2 (𝑛). Clearly the Line 1 has been executed exactly 𝑛 − 1 times.
So do we have 𝑇2 (𝑛) = 𝑂 (𝑛)?

No. Recall the computation model we are working on. In the word-RAM,
we only assume those arithmetic operations within a word take constant
number of steps. We assume the word size𝑤 is a constant1. Therefore, we 1 This slightly deviates from our definition

of the word-RAM. We create in fib2 an
array 𝑓 [0, . . . , 𝑛] and therefore, in order
to random access 𝑓 [𝑛], 𝑤 is at least log𝑛.
However, this would introduce an annoying
log log𝑛 term in the expression. Therefore,
in order to keep our discussion clean, we
slightly change the model and assume 𝑤 is
constant.

need 𝑂 (𝑘) words to store Fib(𝑘). Adding two length-𝑘 numbers takes 𝑂 (𝑘)
time. Therefore, 𝑇 (𝑛) = 𝑂 (2 + 3 + · · · + 𝑛) = 𝑂 (𝑛2).

Can we do it better? Linear algebra helps now. Note that we have for
every 𝑛 ≥ 1, it holds that[

Fib(𝑛 − 1)
Fib(𝑛)

]
=

[
0 1
1 1

]
·
[
Fib(𝑛 − 2)
Fib(𝑛 − 1)

]
=

[
0 1
1 1

]𝑛−1
·
[
0
1

]
Therefore in order the compute Fib(𝑛), we only need to compute

𝐴𝑛−1 for 𝐴 =

[
0 1
1 1

]
. There is a trick to compute 𝐴𝑛 faster than simply

multiplying 𝐴 by 𝑛 times. First assume 𝑛 = 2𝑘 for some 𝑘 ∈ ℕ. Ob-

serve that 𝐴2𝑘 =
(
𝐴2𝑘−1

)2
. We can obtain 𝐴2𝑘 by consecutively compute

𝐴1, 𝐴2, 𝐴4, 𝐴8, . . . , 𝐴2𝑘−1 , 𝐴2𝑘 . We need to double a matrix for 𝑘 − 1 times and
each time involves a constant number of multiplications. If 𝑛 is not of the
form 2𝑘 , let 𝑘 = ⌈log2 𝑛⌉. We can write 𝑛 as 𝑛 =

∑𝑘
𝑖=0 𝑎𝑖 · 2𝑖 where each

𝑎𝑖 ∈ {0, 1}. Then 𝐴𝑛 =
∏𝑘

𝑖=0

(
𝐴2𝑖

)𝑎𝑖
.

We also need to take into account the cost of computing
(
𝐴2𝑘

)2
. Note

that the numbers in 𝐴2𝑘 are of length 𝑂 (2𝑘 ) (Why?) and we need to com-
pute the product of two length-𝑂 (2𝑘 ) numbers for constant number of
times. Let𝑀 (𝑡) to denote the number of steps to compute two length-𝑡
numbers. Then the total number of steps of our algorithm is The algorithm we learnt in the elementary

school to multiply two numbers takes
𝑀 (𝑡 ) = 𝑂 (𝑡2) .𝑇3 (𝑛) = 𝑂 (𝑀 (1) +𝑀 (2) +𝑀 (4) +𝑀 (8) + · · · +𝑀 (2𝑘 )) .

If𝑀 (𝑡) = Θ(𝑡𝛼 ) for some 𝛼 ∈ [1, 2], then one can prove that 𝑇3 (𝑛) =

𝑂 (𝑀 (𝑛)). Therefore, the performance of the algorithm depends on how fast



[ai2615 lecture 1] word-ram, big-o notation, fibonacci numbers 4

we can multiply two length-𝑛 numbers. We will see in future classes that
we can do this in 𝑂 (𝑛 log𝑛) using the method of Fast Fourier Transform.

References

[Wik21] Wikipedia contributors. Word RAM —Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=

Word_RAM&oldid=1020517599, 2021. [Online; accessed 18-
February-2022]. 1

https://en.wikipedia.org/w/index.php?title=Word_RAM&oldid=1020517599
https://en.wikipedia.org/w/index.php?title=Word_RAM&oldid=1020517599

	The Computation Model
	The Big-O notation
	Computing Fibonacci Numbers

