
AI2615 算法设计与分析 2020-2021春季学期

Lecture 7 – Some More Greedy Algorithms
2021年 4月 9日

Lecturer: 张驰豪 Scribe: 陶表帅

In this lecture, we will study more greedy algorithms. We have learned Kruskal’s algorithm for finding
minimum spanning trees in the last lecture. We will learn another greedy algorithm for this problem:
Prim’s algorithm. Next, we will consider the problem of task assignment, and study a greedy algorithm
for this. After that, we will study Huffman encoding, which again uses ideas from greedy algorithms.
Finally, we will study the classical set cover problem. We will see that, although the greedy algorithm does
not always output an optimal solution, it provides a solution that is reasonable close to the optimal one.

1 Prim’s Algorithm

Recall the minimum spanning tree problem from the last lecture.

Problem 1 (Minimum Spanning Tree (MST)). Given a weighted undirected graph G = (V ,E , w) such that
w(e) > 0 for any e ∈ E , find a connected subgraph T = (V ,E ′) containing all vertices ofG with the minimum
weight:

w(T)≜
∑

e∈E ′
w(e).

A subgraph T with minimum weight is called a minimum spanning tree.

Kruskal’s algorithm iteratively adds an edge that has minimumweight, while maintaining that the selected
edges do not form any cycle. Prim’s algorithm, on the other hand, works on vertices in a way that is similar
to Dijkstra’s algorithm.
Prim’s algorithm starts by including an arbitrary vertex u0 to a vertex set S. In each iteration, it finds the
vertex in V \ S that are closest to S, adds this vertex to S, and updates the distances for all the neighbors
of this vertex. The algorithm is shown in Algorithm 1. The minimum spanning tree is stored by “pre” in
the algorithm, where pre(u) stores the parent of u in the tree.
The difference between Prim’s algorithm and Dijkstra’s algorithm is that, Dijkstra’s algorithm maintains
the distances of vertices to the source vertex s, while Prim’s algorithm maintains the distances of vertices
to the set S.
If the priority queue is implemented by a heap, it is easy to check that Prim’s algorithm takes O(m logn)

time.

1

Algorithm 1 Prim’s algorithm
PRim(G = (V ,E , w))

1: for all u ∈V :
2: cost(u) ←∞
3: pre(u) ←NIL
4: endfor

5: Pick an initial vertex u0 ∈V

6: cost(u0) ← 0

7: build a priority queue H = Priority_Queue(V) with respect to the costs
8: while H 6= ;:
9: v ← H .delete_min() // pop out a vertex with minimum cost

10: for each {v, z} ∈ E :
11: if cost(z) > w(v, z):
12: cost(z) ← w(v, z)

13: pre(z) ← v

14: endif

15: endfor

16: endwhile

2 Task Assignments

Problem 2 (Task Assignment). Given a set of n tasks such that each task i has an active interval (s(i), f (i))

where s(i) is the starting time and f (i) is the finishing time, find a maximum subset of tasks whose active
intervals are non-overlapping.

We first discuss a few greedy algorithms that do not work (meaning that they do not always output optimal
solutions).
Consider the greedy algorithm that iteratively selects a task with earliest starting time s(i) that does not
overlap with the already selected tasks. The following example shows that this algorithm does not always
output the optimal solution. There is a task with starting time 0 and finishing time 10. There are five tasks
with active intervals (1,2), (3,4), (5,6), (7,8) and (9,10). This greedy algorithm will first choose the task
with starting time 0, which will make the remaining five tasks unavailable. A clearly better solution is to
select the remaining five tasks without selecting the first task.
Consider the greedy algorithm that iteratively selects a task with shortest active interval that does not
overlap with the already selected tasks. This still does not work. Suppose there is a task with shortest
active interval (3,5) and there are two tasks with longer active intervals (0,4) and (4,8) that intersect (3,5).
This greedy algorithm will select the first task, while selecting the remaining two tasks is a better solution.

2

Consider the greedy algorithm that iteratively selects a task that minimizes the number of the tasks that
intersect this task. This seems to be a better algorithm, but it still fails. We leave it as an exercise to find
an example where this algorithm fails to output the optimal solution.
Here is a greedy algorithm that works: iteratively select a task with the earliest finishing time that does
not overlap with the already selected tasks. The algorithm is formally described in Algorithm 2.

Algorithm 2 A greedy algorithm for task assignment
TasKAssign{(s(i), f (i)) | i = 1, . . . ,n}

1: sort the task by the finishing time f (i)

2: S ←;
3: F ←−∞ // F records the finishing time for the previous task selected
4: for i = 1, . . . ,n:
5: if s(i) ≥ F : S ← S ∪ {i };
6: F ← f (i)

7: endfor

8: return S

Theorem 3. Algorithm 2 outputs an optimal solution.

Proof. Let S = {s1, . . . , sℓ} be the output of Algorithm 2, and let O = {o1, . . . ,om} be the optimal solution.
Suppose both S and O are sorted by ascending order of the finishing times. We aim to show that ℓ ≥ m.
We will prove the following observation: for any i ≤ min{ℓ,m}, we have f (si) ≤ f (oi). Notice that this
observation immediately implies the theorem: suppose this observation is true and we have ℓ< m; then
f (sℓ) ≤ f (oℓ), and the algorithm should have included oℓ+1 to S as well.
This observation can be proved by induction. For the base step, we have f (s1) ≤ f (o1), as the first task
selected has the earliest finishing time. For the inductive step, suppose f (si) ≤ f (oi). The task oi+1 satisfies
s(oi+1) ≥ f (oi) ≥ f (si), for otherwise there is an overlap between the active intervals for oi and oi+1, and O

should not have been a valid solution. This implies that oi+1 is a candidate that is available to be included
in S = {s1, . . . , si }. Since the algorithm always selects an available task with the earliest finishing time, we
have f (si+1) ≤ f (oi+1).

The time complexity for Algorithm 2 is dominated by the sorting step at Line 1. The overall time complexity
is O(n logn).

3 Huffman Encoding

Supposewewant to compress an e-bookwhose characters are from a setX (for example, if this is an English
book, X could be the set of 26 English letters). We would like to encode each character by a binary string.

3

That is, we want to construct a function f : X→ {0,1}∗, such that, the compressed e-book encoded by f

is as short as possible, and it is possible to recover the original content of the book from the compressed
binary string.
For a toy example, consider X that contains only four alphabets: A,B ,C ,D . A naïve way to encode X is
to use two-bit strings with f (A) = 00, f (B) = 01, f (C) = 10 and f (D) = 11. This will encode a message of
length m to a binary string of length 2m. In general, for |X| = t , encoding a message of length m requires
m log2 t bits. Without any prior knowledge to the message, this is clearly optimal. However, in many
scenarios, we know the frequency for each alphabet. Still using our example X = {A,B ,C ,D}, suppose a
message of 130 millions characters such that the number of occurrences for each of the four alphabets is
given in Table 1. Encoding this message using the above-mentioned encoding scheme will use 260 millions
bits.

Alphabet Number of Occurrences
A 70 millions
B 3 millions
C 20 millions
D 37 millions

Table 1: The number of occurrences for each alphabet in a message with four alphabets.

Consider a different encoding schemewith f (A) = 0, f (B) = 100, f (C) = 101 and f (D) = 11. In this scheme,
A is encoded by 1 bit, D is encoded by 2 bits, and each of B and C is encoded by 3 bits. Using this scheme,
the message is encoded by 70×1+3×3+20×3+37×2 = 213 millions bits, which is shorter than 260 millions
bits before. The idea here is to use shorter binary string to encode an alphabet that has more frequency.
However, we must be cautious that the encoding should not cause ambiguity, in order to make recovering
original message possible. For example, the encoding scheme given by f (A) = 0, f (B) = 01, f (C) = 11 and
f (D) = 001 is ambiguous: given a binary string 001, it may represent AB or D . The encoding scheme
must be prefix-free. That is, the encoding of one alphabet must not be the prefix of the encoding of another
alphabet.
A prefix-free encoding can be represented by a full binary tree. The alphabets correspond to the leafs
of the tree. For each internal node, the edge connecting to its left child represent bit “0” and the edge
connecting to its right child represent bit “1”. For each alphabet, the bits on the path from the root to the
leaf representing this alphabet corresponds to the encoding of this alphabet. Figure 1 gives an example
of the tree representation for the encoding scheme f (A) = 0, f (B) = 100, f (C) = 101 and f (D) = 11 used
earlier.
Given an alphabet setX= {a1, . . . , at }, a message and a full binary tree T representing a prefix-free encoding
scheme, let fi be the number of occurrences of ai and di be the depth of the leaf node corresponding to

4

B C

D

A

0

0

0

1

1

1

Figure 1: The full binary tree representation for the encoding scheme f (A) = 0, f (B) = 100, f (C) = 101

and f (D) = 11.

alphabet ai . Notice that di is exactly the length of the binary string representing ai . We define the cost of
T as

cost(T)≜
t∑

i=1
fi ·di ,

which represents the length of the binary string encoding the message. We would like to build the tree T

that minimizes its cost.
The cost of T can be computed in the following alternative way. Using Figure 1 as an example, each
occurrence of B in the message contributes 3 to the overall cost. An alternative way to consider this is to
let B and each of B ’s ancestors, excluding the root node, contribute 1 to the overall cost. In this example,
for each occurrence of B , node B contribute 1, the parent of B and C contributes 1, and the parent of D

(which is an ancestor of B) contributes 1. Since B occurs 3 millions times, B is charged 3 millions, and
each of B ’s ancestors (excluding the root) is charged 3 millions. Notice that each internal node is charged
for all the leafs that are its descendants. For example, the parent of B and C is charged 3+20 = 23 millions,
and the parent of D is charged 3+20+37 = 60 millions. Notice that the cost contributed by each internal
node equals to the sum of the costs contributed by its two children. See Figure 2 for an example of this.

3.1 Huffman Encoding

Huffman encoding utilizes the idea of using shorter binary strings to represent alphabets with higher
frequencies. Suppose X= {a1, . . . , at } is sorted by the ascending order of the frequencies, or the numbers
of occurrences. Since a1 and a2 have least frequencies, we use the longest strings to encode it. On the
full binary tree, we put the two nodes representing them at the deepest level. Since only the depths of
the leafs matter, we can put the two nodes representing a1 and a2 under the same parent. Now we can
treat this parent as a leaf node representing a new alphabet a12 whose number of occurrence is f1 + f2,
and recursively solve the problem of tree building with X′ = {a12, a3, . . . , at }. Of course, we need to sort

5

B 3 C 20

D 37

A 70

3 + 20 = 23

23 + 37 = 60

Figure 2: The cost contributed by each node for the encoding scheme f (A) = 0, f (B) = 100, f (C) = 101

and f (D) = 11 and the message described by Table 1.

X′ again, as the frequency of a12 may be higher than a3. This is precisely what Huffman encoding does.
Notice that the idea behind Huffman encoding is still greedy: in each iteration, we always choose two
alphabets with least frequencies. An example is given in Figure 3.

B 3 C 20

23

Solving the problem

with 3 alphabets

with frequencies

{23, 37, 70}

B 3 C 20

23
D 37

60
Solving the problem

with 2 alphabets

with frequencies

{60, 70}

B 3 C 20

23
D 37

60
A 70

Figure 3: Example of Huffman encoding with the message described by Table 1.

Huffman encoding scheme is described in Algorithm 3. The time complexity for it is O(t log t).

3.2 Optimality of Huffman Encoding

Although Huffman encoding is not optimal in general, we will see a particular example where Huffman
encoding is optimal.
Consider X = {a1, . . . , at } with fi = m · 2−ki , where m is the length of the message, and ki is a positive
integer. In addition, we make sure that ∑t

i=1 2−ki = 1, so that ∑t
i=1 fi = m. Notice that this is always

possible:

f1 = m ·2−(t−1), f2 = m ·2−(t−1), f3 = m ·2−(t−2), f4 = m ·2−(t−3), f5 = m ·2−(t−4), . . . , ft = m ·2−1.

6

Algorithm 3 Huffman encoding scheme
Huffman(X, f = { f1, . . . , ft })

1: H ← a priority queue of X with respect to f

2: for k = t +1, t +2, . . . ,2t −1:
3: i ← H .delete_min()
4: j ← H .delete_min()
5: pre(i) = pre(j) = k // build a node k and let i and j be its children
6: f (k) ← f (i)+ f (j)

7: H .insert(k)

8: endfor

In the full binary tree T generated by Huffman encoding, alphabet ai with fi = m ·2−ki will be at the ki -th
level of the tree. In fact, all the nodes (internal nodes or leafs) at the i -th level must have cost m ·2−ki .
(Check this!) Therefore,

cost(T) =
t∑

i=1
fi ki = m

t∑
i=1

2−ki ki = m
t∑

i=1
pi log2

(
1

pi

)
,

where pi ≜ Pr[X = ai] is the probability that an alphabet X selected uniformly at random from themessage
is ai .
In information theory, the entropy of a random variable X that takes value from {1, . . . , t } is defined by

Entropy(X) =
t∑

i=1
Pr[X = i] log2

(
1

Pr[X = i]

)
.

In our case, we have
cost(T) = m ·Entropy(X).

Entropy measures the amount of information/uncertainty of a random variable. We can see that Huffman
encoding is optimal in our example with fi = m ·2−ki , because each alphabet in the message contains at
least Entropy(X) bits information.
To help better understanding entropy, let us look at some examples with messages that use alphabet set
X= {A,B}. If a message contains only A’s, we know that such a message delivers 0 information. Indeed,
the entropy is

p A · log2

(
1

p A

)
+pB · log2

(
1

pB

)
= 1 · log2 1+0 · log2

(
1

0

)
= 0,

where 0 · log2(1
0) = 0 is based on lim

x→0+ x · log2(
1

x
) = 0.

Consider another extreme scenario that each alphabet of the message is equal likely to be A or B . In this
case, the entropy is maximized:

p A · log2

(
1

p A

)
+pB · log2

(
1

pB

)
= 1

2
· log2 2+ 1

2
· log2 2 = 1.

7

In this case, we need exactly 1 bit to represent an alphabet: for example, 0 for A and 1 for B .
Consider an intermediate scenario that the message contains exactly m −1 A’s and 1 B . In this case, the
entropy is

p A · log2

(
1

p A

)
+pB · log2

(
1

pB

)
= m −1

m
· log2

(m

m −1

)
+ 1

m
· log2 m.

This is the average number of bits to encode a single alphabet. The total number of bits to encode the entire
message is

m ·
(

m −1

m
· log2

(m

m −1

)
+ 1

m
· log2 m

)
= (m −1)log2

(m

m −1

)
+ log2 m.

When m →∞, log2 m grows significantly faster than (m−1)log2

(m
m−1

)
(Check this!), and the total number

of bits is log2 m. This is intuitive. To encode this message, it suffices to give the location of B in themessage,
which requires log2 m bits to represent.
In the general case where fi may not be represented as m ·2−ki , Huffman encoding may not be optimal.
However, there are ways to adapt it and make it optimal.

4 Set Cover

Consider the following problem in Figure 4. There are eleven communities. We want to build many
hospitals to serve the people in these communities. Each hospital can only be built in a community, and we
require that the distance between each community and the closest hospital near it is less than 5 kilometers.

A

B

C

D

E
F

G
H

I

J

K

A

B

C

D

E
F

G
H

I

J

K

Figure 4: Eleven communities and communities that are within 5 kilometers of each other.

This is a typical set cover problem.

Problem 4 (Set Cover). Given a universeU of n elements and a collection of m subsets S1, . . . ,Sm ⊆U , find
a minimum sub-collection of those subsets whose union is U .

The hospital building problem can be viewed by a set cover problem, whereU contains all the communities
and Si is the set of all communities that are within distance 5 kilometers from community i .

8

There is a natural greedy algorithm for this problem: iteratively select a subset that contains the most
uncovered elements, until all elements are covered by the chosen subsets. In the example in Figure 4, A

will be chosen first, because it contains themost communities {A,B ,D,E , H , I ,K }. After that, the uncovered
communities are C ,F,G , J . The next hospital will be built on either F or G , each of which contains two
uncovered communities: {F,G}. Finally, the algorithm will chose C and J in the next two iterations.
However, this solution is not optimal. We have built four hospitals, while a better solution is to build only
three hospitals at B , E and I .
Nevertheless, we will show that this greedy algorithm is not too far away from being optimal.

Theorem 5. Given a set cover instance, suppose the optimal solution requires choosing k subsets. The greedy

algorithm will choose at most k lnn subsets.

Proof. Let nt be the number of the uncovered elements after t iterations of the algorithm. We have n0 =
n. After t iterations, we know that there exist k subsets that can cover all elements in U , and these k

subsets can certainly cover all those nt uncovered elements. By the pigeonhole-principle, there exists a
subset that can cover at least nt /k elements. Since the greedy algorithm selects a subset that contains
the most uncovered elements, the next subset selected will contains at least nt /k elements. Therefore,
nt+1 ≤ nt −nt /k , which implies

nt ≤ nt−1

(
1− 1

k

)
≤ nt−2

(
1− 1

k

)2

≤ ·· · ≤ n

(
1− 1

k

)t

.

After k lnn iterations, the number of uncovered elements is at most

n

(
1− 1

k

)k lnn

< n
(
e−

1
k

)k lnn = 1.

Since the number of uncovered elements needs to be an integer, all elements are covered after k lnn iter-
ations.

The greedy algorithm is a typical approximation algorithm. Based on Theorem 5, we say that the greedy
algorithm achieves a lnn-approximation (notice that the solution of the greedy algorithm is at most a lnn

factor of the optimal solution).
A natural question is, can we do better in terms of approximation ratio? In fact, we will see in the future
lectures that the set cover problem is NP-hard. Moreover, Dinur and Steurer [2014] showed that, unless
P=NP, for any constant ε> 0, there does not exist a polynomial time algorithm that achieves a (1−ε) lnn-
approximation. We say that the set cover problem is NP-hard to approximate to within factor (1−ε) lnn

for any constant ε> 0. This implies that the greedy algorithm is almost the best we can do.

参考文献

Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the forty-sixth

annual ACM symposium on Theory of computing, pages 624–633, 2014. 9

9

	Lecture 7 – Some More Greedy Algorithms
	Prim's Algorithm
	Task Assignments
	Huffman Encoding
	Huffman Encoding
	Optimality of Huffman Encoding

	Set Cover

