
AI2615 算法设计与分析 2020-2021春季学期

Lecture 6 – Greedy Algorithms: Kruskal’s Algorithm
2021年 4月 2日

Lecturer: 张驰豪 Scribe: 陶表帅

Greedy algorithms are a type of iterative algorithms that myopically choose the locally optimal choice at
each iteration. For example, when a student is facing many homework problem sets that have different
deadlines of submission, a typical greedy algorithm always iteratively chooses a homework problem set
with the earliest deadline. As another example, in a board game, a greedy algorithm will always play a
locally best move, without further consideration of the future. For some problems, the greedy algorithm
is provably optimal.

Problem 1 (Minimum Spanning Tree (MST)). Given a weighted undirected graph G = (V ,E , w) such that
w(e) > 0 for any e ∈ E , find a connected subgraph T = (V ,E ′) containing all vertices ofG with the minimum
weight:

w(T)≜
∑

e∈E ′
w(e).

A subgraph T with minimum weight is called a minimum spanning tree.

First of all, it is easy to check a minimum spanning tree T of a graph G is indeed a tree. Suppose otherwise.
There must be a cycle in T . Since w(e) > 0 for all e ∈ E , removing any edge of T can reduce the weight of
T while still guaranteeing that T is connected.
Notice that T must contain all vertices of the original graph G . The set of edges E ′ is sufficient to describe
T . We will describe a minimum spanning tree by a set of edges, instead of a subgraph. Notice that a
minimum spanning tree T contains exactly n −1 edges: |T | = n −1.
Figure 1 presents an example of a graph with its minimum spanning tree.

A C E

B D F

1 6

4
3

2
4

5

4 6

Figure 1: A graph with its minimum spanning tree. Bold edges form a minimum spanning tree.

1

1 Kruskal’s Algorithm

Kruskal’s algorithm is a typical greedy algorithm that finds a minimum spanning tree. Kruskal’s algorithm
can be described simply as follows. Starting from setting T =;, it iteratively adds an edge with minimum
weight while making sure T do not have any cycle, and it terminates when T contains exactly n − 1

edges. Using the graph in Figure 1 as an example, Kruskal’s algorithm will iteratively choose the edges
{A,C }, {C ,D}, {B ,C }, {C ,F } and {E ,F }.

1.1 Correctness of Kruskal’s Algorithm

We first prove the following proposition.

Proposition 2. Given a weighted undirected graph G = (V ,E , w) with positively-weighted edges, consider an

arbitrary subset of edges X ⊆ E such that X is a subset of a minimum spanning tree. For any S ⊊V such that

X ∩E(S,V \ S) =;,1 X ∪ {e∗} is a subset of a minimum spanning tree, where e∗ ∈ argmine∈E(S,V \S) w(e)2 is

an edge in E(S,V \ S) with minimum weight.

Proof. We prove it by contradiction. Suppose no minimum spanning tree contains X ∪{e∗}. Let e∗ = {u, v}

where u ∈ S and v ∈V \ S. Let T be a minimum spanning tree containing X . By our assumption, e∗ ∉ T .
Since T is connected, there exists a path connecting u and v in T . This path, together with e∗ = {u, v},
form a cycle. Since u ∈ S and v ∈V \ S, there exists an edge e ′ = {u′, v ′} ∈ T such that u′ ∈ S and v ′ ∈V \ S.
Consider the subgraph with edge set T ′ = T ∪{e∗}\{e ′}. This subgraph is still connected: we know T ∪{e∗}

contains a cycle and e ′ is on the cycle.
As e∗ ∈ argmine∈E(S,V \S) w(e) and e ′ ∈ E(S,V \S), we have w(e ′) ≥ w(e). If w(e ′) > w(e), T ′ has less weight
than T , which contradicts to that T is a minimum spanning tree. If w(e ′) = w(e), the weights of T ′ and T

is equal. Thus, T ′ is also a minimum spanning tree. We have X ⊆ T ′, as the only edge removed from T is
e ′ ∈ E(S,V \ S) and X ∩E(S,V \ S) =;. We also have e∗ ∈ T ′ by our construction. Therefore, X ∪ {e∗} ⊆ T ′,
which contradicts to our assumption that no minimum spanning tree contains X ∪ {e∗}.

Theorem 3. Kruskal’s algorithm always finds a minimum spanning tree.

Proof. Let Xi be the set of edges after i -th round of the algorithm. It suffices to show that Xi is always a
subset of a minimum spanning tree for any i . We prove this by induction on i .
The base step is trivial: X0 =; is a subset of any minimum spanning tree.
For the inductive step, suppose Xi is a subset of a minimum spanning tree. Let e∗ = {u, v} be the edge added
to T in the next iteration. Let Su ⊆V be the set of all vertices reachable from u by edges in Xi . We know

1E(S,V \ S) is the set of edges (u, v) such that u ∈ S and v ∈V \ S.
2argmine∈E(S,V \S) w(e) is the set of edges in E(S,V \ S) that have minimum value of w(e). Notice that there may be more

than one edge with minimum weight.

2

v ∉ T , for otherwise adding e∗ to T will create a cycle implying that e∗ should not have been added by the
algorithm. Therefore, e∗ ∈ E(Su ,V \ Su). Moreover, we have Xi ∩E(Su ,V \ Su) =;, as Su already contains
all vertices reachable from u by edges in Xi . This also implies any edge in E(Su ,V \ Su) can potentially
be chosen by the algorithm. Since the algorithm always chooses a valid edge with minimum weight, we
have e∗ ∈ argmine∈E(Su ,V \Su) w(e). By Proposition 2, Xi+1 = Xi ∪ {e∗} is contained in a minimum spanning
tree.

1.2 Implementation of Kruskal’s Algorithm

To implement Kruskal’s algorithm, we need a data structure that stores subsets of vertices, where each
subset contains vertices that are mutually connected by currently selected edges. For each subset, we
define a vertex as its representative. We need following subroutines.

• MaKeSet(u): create a set containing a single vertex u.

• Find(u): find the representative of the set containing u.

• Union(u, v): merge the set containing u and the set containing v .

The implementations of these three subroutines are deferred to the next section. Given these three sub-
routines, Kruskal’s algorithm is described in Algorithm 1.

Algorithm 1 Kruskal’s algorithm
KRusKal(G = (V ,E , w))

1: for each u ∈V , MaKeSet(u)
2: T ←;
3: sort E by ascending order of w(·)
4: for each e = {u, v} ∈ E in the order above:
5: if Find(u) 6= Find(v):
6: T ← T ∪ {e}

7: Union(u, v)
8: endif

9: endfor

10: return T

2 Union-Find Set

In this section, we discuss how to implement the three subroutines, MaKeSet, Find, and Union. This can
be implemented using a data structure called the union-find set. In a union-find set, each set is represented

3

by a tree, where nodes of the tree are elements of the set. The root node of the tree is the representative
of the corresponding set.
Let π(u) denote the parent of u. Let π(u) = u if u is a root. Let rank(u) be the height of the subtree rooted
at u. The implementations of the three subroutines are as follows.
MaKeSet(u):

• π(u) ← u;

• rank(u) ← 0;

Find(u):

• while π(u) 6= u: u ←π(u);

• return u;

Union(u, v):

• ru ← Find(u) and rv ← Find(v);

• if ru = rv : return;

• if rank(ru) > rank(rv): π(rv) ← ru ;

• else: π(ru) ← rv ;

• if rank(ru) = rank(rv): rank(rv) ← rank(rv)+1;

The implementations of MaKeSet and Find are straightforward. Union(u, v) first find the roots of the
two trees containing u and v respectively. It then attaches the root of the tree with the lower height as
a child of the root of the tree with the higher height. Figure 2 gives an example of a sequence of Union
operations.

2.1 Time Complexity

The time complexity for MaKeSet(u) is clearly O(1).
The worst case time complexity of Find(u) is the height of the tree when u is a deepest leaf node, as we
need to travel along the path from u to the root. The time complexity for Find(u) is the height of the
tree (asymptotically). In Union(u, v), we always merge two trees such that the tree with lower height is
attached to the tree with a higher height. This significantly reduces the height of the tree.

Proposition 4. A subtree rooted at a node of rank k contains at least 2k nodes.

Proof. We prove this by induction.
For the base step, the subtree rooted at a node with rank 0 only contains one node (itself), and we have
20 = 1.
For the inductive step, suppose for any node with rank k , the subtree rooted at it contains at least 2k nodes.
By our definition of subroutine Union, whenever a node’s rank become k +1, it must be that two trees

4

C0 G0 B0

F 1

A0 E1

D2

After Union(B,G):

B0

E1

C0 G0 A0

F 1 D2

After Union(C,G) and Union(E,A):

A0 B0 C0

D1 E1 F 1 G0

After Union(A,D), Union(B,E) and Union(C,F):

A0 B0 C0 D0 E0 F 0 G0

Figure 2: An example of a sequence of Union operations. Superscripts denote the ranks of the nodes.

whose roots have rank k have been merged. By induction hypothesis, each of the two tree contains at
least 2k nodes. Thus, the merged tree contains at least 2k +2k = 2k+1 nodes. This concludes the inductive
step.

Proposition 5. Once a node become an internal node (i.e., not a root), its rank remains the same ever after.

Proof. By our definition of Union, only root node has a chance to change its rank.

Proposition 6. Every parent has a strictly higher rank than the rank of its child. That is, rank(π(x)) > rank(x)

whenever x is not a root.

Proof. This again follows from our definition of Union. Initially, all nodes are isolated. Whenever two trees
are merged, the root with lower rank becomes a child of the root with higher rank, so rank(π(x)) > rank(x)

is preserved. If two roots have the same rank, the new root’s rank is increased by 1 after merging, which
again preserves rank(π(x)) > rank(x).

5

As a corollary to the proposition above, if two nodes u, v satisfy rank(u) = rank(v), then the subtree rooted
at u is disjoint to the subtree rooted at v . If this is not the case, then either u is an ancestor of v or v is an
ancestor of u, and Proposition 6 implies that this is impossible.

Proposition 7. The number of the nodes with rank k is at most n/2k .

Proof. Let nk be the number of of nodes with rank k . By Proposition 4, each of those nk nodes is a root of
a subtree with at least 2k nodes. By the corollary to Proposition 6, these subtrees are disjoint. Therefore,
we have identified at least nk ·2k nodes. Thus, n ≥ nk ·2k , which implies nk ≤ n/2k .

Proposition 7 implies that themaximum rank over all nodes is atmost log2 n. Thismeans that themaximum
depth of the tree is at most log2 n. Therefore, the time complexity of Find(u) is O(logn).
Finally, Union(u, v) only requires two executions of Find and some operations that can be done in a
constant time. The time complexity of Union(u, v) is O(logn).
Let us turn back to Kruskal’s algorithm. The initialization of the n sets requires O(n) time. Sorting all
edges requires O(m logm) = O(m logn) time. For the main part, each edge is only processed once, with
a constant number of Find and Union operations. The time complexity for the main part is therefore
O(m logn). Putting together, the time complexity of Kruskal’s algorithm is O(m logn).

3 Refining Kruskal’s Algorithm by Path Compression

The bottleneck for the time complexity of Kruskal’s algorithm is the sorting step and the main part, each
of which require O(m logn) time. In some applications, the edges of a weighted graph have already been
sorted beforehand. In some other applications, the weights of those edges are upper-bounded by a small
number, in which case sorting only requires O(m) time. In either case, the main part of Kruskal’s algorithm
is the only bottleneck. In this section, we will see that the time complexity of the main part of Kruskal’s
algorithm can be further reduced by some refined implementations of the subroutine Find.

Path compression The refinement is simple: whenever we implement Find(u), after we have searched
the root of the tree containing u, we attach u as a direct child of the root. This operation does not affect
the correctness of the algorithm, as all we care is whether u is contain in the set of vertices represented
by the tree. On the other hand, this operation can potentially reduced the height of the tree. The new
implementation of Find(u) is shown below.
Find(u):

• if u 6=π(u): π(u) ← Find(π(u));

• return π(u);

6

Notice that we choose not to update the rank of the nodes during Find(u). As a result, since the new
implementation can reduce the height of the tree, the rank of a node may no longer represent the height
of the subtree rooted at this node.
Nevertheless, most of the propositions in the previous section still hold. Proposition 5, 6 and 7 still hold
here. In particular, the proofs for Proposition 5 and 6 remains unchanged. For Proposition 7, it suffices to
notice that the new implementation of Find only changes the way nodes are attached, not the rank of any
node. Therefore, if Proposition 7 holds before, Proposition 7 also holds here.
Figure 3 illustrates an example of a sequence of Find operations with the new path compression technique
introduced above.

Find(K)

B0 C1 E2 F 1 I0 K0 G1

D0 H0 J0

A3

I0 J0 K0

D0

F 1

G1 H0

B0 C1 E2

A3

Find(I)

K0

D0 H0 J0

B0 I0
C1 E2

G1

F 1

A3

Figure 3: An example of a sequence of Find operations with path compression. Superscripts denote the
ranks of the nodes.

7

3.1 Time Complexity

What is the time complexity for the main part of Kruskal’s algorithm with this path compression refine-
ment? Tarjan [1975] showed that the time complexity is O(mα(n)), where α(n) is the inverse of the
Ackerman function. Although α(n) is unbounded, it grows extremely slowly. To see how slow it is, if N

represents the number of atoms in our universe, we have α(N) ≤ 4; we have α(9876!) = 5. We can treat
α(n) as a constant in any real life application. We say that the amortized time complexity for a Find op-
eration takes O(α(n)) time, meaning that the average time for a Find operation is O(α(n)). Recall that we
have introduced the concept of amortized time complexity when we were introducing Fibonacci heap in
the last lecture.
In this section, we show a weaker result that the running time is O(m log∗ n), where log∗ n is the number
of log operations required to make n less than 1. That is, log∗ n equals to k where

loglog · · · log︸ ︷︷ ︸
k logs

n ≤ 1.

log∗ n still grows slowly enough such that it can be treated as a constant in any real life applications. For
example, we have

log∗
(
22222)

= log∗
(
265536)= 5.

This result is due to Hopcroft and Ullman [1973].
Firstly, we partition {1, . . . ,n} to log∗ n levels as follows:

{1}, {2}, {3,4}, {5,6, . . . ,16}, {17, . . . ,216}, · · · , {k +1, . . . ,2k }, {2k +1, . . . ,22k
}, · · ·

Next, we will use a clever charging argument to analyze the time complexity. This works as follows. We
will award each node certain amount of money, such that the total money awarded is O(n log∗ n) dollars.
We will then define a special kind of Find operations where a node need to spend $1 to execute. Next, we
will show that each node’s received money is sufficient to pay for all this kind of operations throughout
the algorithm. Finally, we will show that each execution of Find(u) requires a number of steps that is
equal to O(log∗ n) plus the money paid by the nodes on the path from u to its root relevant to this Find(u)

operation. Therefore, the overall time complexity is given by O(m log∗ n) plus the total money all nodes
have paid during the algorithm. Since each node’s received money is sufficient to pay for its cost, the
overall time complexity is O(m log∗ n)+O(n log∗ n) =O(m log∗ n).

Defining each node’s award and payment Whenever a root node u becomes an internal node during
the algorithm, we award it 2k dollars if rank(u) is in the level {k +1, . . . ,2k }. Proposition 5 implies that the
rank of u will be fixed from now on. It is also clear that u will no longer become a root again.
Whenever Find(u) is executed, we charge $1 from node u if rank(π(u)) and rank(u) are in the same level
and π(u) is not a root. Notice that there are many recursive Find operations in Find(u). Node u is only

8

charged $1 once during Find(u), and those other Find operations in Find(u) are charged from u’s ancestors
when applicable (i.e., when any v of u’s ancestors satisfies that rank(π(v)) and rank(v) are in the same
level and π(v) is not a root).
Now let us calculate the total amount of money awarded to the nodes. By the end of the algorithm,
Proposition 7 says that the number of nodes with rank k is at most n/2k . Thus, the number of nodes with
rank strictly larger than k is at most n

2k+1 + n
2k+2 +·· · ≤ n

2k . Since we have argued that the ranks of the nodes
will be fixed once they receive awards and those nodes will never be roots again (which means they will
not be awarded more than once), the total amount of money paid to those node is at most 2k · n

2k = n dollars.
In particular, those nodes with ranks fall into the level {k +1, . . . ,2k } is a subset of the set of nodes with
ranks strictly larger than k , and we need to pay at most n dollars to them. The total amount of money
awarded to all nodes is therefore O(n log∗ n), as there are log∗ n levels.

Proving that each node’s award is sufficient to cover the cost it needs to spend A crucial observation
here is that, whenever $1 is charged from a node u, u’s new parent must have a higher rank than that of
its old parent. This is because, after Find(u), u is attached to the root, which is an ancestor of u’s current
parent, and Proposition 6 implies the root has a higher rank. The only case when the rank of u’s parent
is no smaller than the rank of the root is that u is a root itself or u is the child of a root, and our rule
indicates that u will not be charged in this case. With this observation, any node whose rank is in the level
{k +1, . . . ,2k } will be charged no more than 2k −k < 2k dollars, which is less than the award it receives.
We remark that once rank(π(u)) and rank(u) are in different levels. They will remain in different levels in
the remaining part of the algorithm, even if Find(u) may be called again and π(u) may be changed after
that. By our above observation and Proposition 5, the rank of π(u) can only change from a level higher
than the level of rank(u) to a level that is even higher, and rank(u) itself will never change.
As another remark, our claim that each node’s award is sufficient holds for an arbitrarily number of Find
operations. Intuitively, when all nodes are called with the Find operations for a sufficiently large number
of times, the graph will reach a state where each pair of rank(u) and rank(π(u)) are in different levels (for
u being an internal node).

Time Complexity for each Find(u) Whenever a single Find(u) is called, Find is called for all nodes on
the path connecting u to the current root of the tree containing u. A node v on the path do not need to
pay $1 only if rank(π(v)) and rank(v) are in different levels, or π(v) is the root. There can be at most log∗ n

nodes of the former type since Proposition 6 implies that the ranks of the nodes along this path is strictly
increasing. There is 1 node for the latter type, which are the node whose parent is the root. Therefore, the
time complexity for each Find(u) is asymptotically given by 1+ log∗ n plus the amount of money paid by
those nodes involved in Find(u).

9

Putting together In Kruskal’s algorithm, Find operation is executed for O(m) times. We have seen that
the time complexity for each Find(u) is asymptotically given by 1+ log∗ n plus the amount of money
paid by those nodes involved in Find(u). The overall time complexity for those O(m) Find operations is
therefore O(m log∗ n + [total amount of money paid by all nodes]). Since we have proved that the award
O(n log∗ n) is sufficient, the overall time complexity is O(m log∗ n +n log∗ n) =O(m log∗ n).

参考文献

John E. Hopcroft and Jeffrey D. Ullman. Set merging algorithms. SIAM Journal on Computing, 2(4):294–303,
1973. 8

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM (JACM),
22(2):215–225, 1975. 8

10

	Lecture 6 – Greedy Algorithms: Kruskal's Algorithm
	Kruskal's Algorithm
	Correctness of Kruskal's Algorithm
	Implementation of Kruskal's Algorithm

	Union-Find Set
	Time Complexity

	Refining Kruskal's Algorithm by Path Compression
	Time Complexity

